Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,81 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- boapps/alpaca-hu
|
5 |
+
- mlabonne/alpagasus
|
6 |
+
language:
|
7 |
+
- hu
|
8 |
+
library_name: transformers
|
9 |
+
pipeline_tag: text-generation
|
10 |
---
|
11 |
+
|
12 |
+
# szürkemarha-mistral v1
|
13 |
+
|
14 |
+
Ez az első (teszt) verziója egy magyar nyelvű instrukciókövető modellnek.
|
15 |
+
|
16 |
+
## Használat
|
17 |
+
|
18 |
+
Ebben a repoban van egy `app.py` script, ami egy gradio felületet csinál a kényelmesebb használathoz.
|
19 |
+
|
20 |
+
Vagy kódból valahogy így:
|
21 |
+
|
22 |
+
```python
|
23 |
+
import torch
|
24 |
+
from peft import PeftModel
|
25 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig
|
26 |
+
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
28 |
+
|
29 |
+
BASE_MODEL = "mistralai/Mistral-7B-v0.1"
|
30 |
+
LORA_WEIGHTS = "boapps/szurkemarha-mistral"
|
31 |
+
|
32 |
+
device = "cuda"
|
33 |
+
|
34 |
+
try:
|
35 |
+
if torch.backends.mps.is_available():
|
36 |
+
device = "mps"
|
37 |
+
except:
|
38 |
+
pass
|
39 |
+
|
40 |
+
nf4_config = BitsAndBytesConfig(
|
41 |
+
load_in_4bit=True,
|
42 |
+
bnb_4bit_quant_type="nf4",
|
43 |
+
bnb_4bit_use_double_quant=True,
|
44 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
45 |
+
)
|
46 |
+
|
47 |
+
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, quantization_config=nf4_config)
|
48 |
+
|
49 |
+
model = PeftModel.from_pretrained(
|
50 |
+
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
|
51 |
+
)
|
52 |
+
|
53 |
+
prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
54 |
+
|
55 |
+
### Instruction:
|
56 |
+
Melyik megyében található az alábbi város?
|
57 |
+
|
58 |
+
### Input:
|
59 |
+
Pécs
|
60 |
+
|
61 |
+
### Response:"""
|
62 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
63 |
+
input_ids = inputs["input_ids"].to(device)
|
64 |
+
generation_config = GenerationConfig(
|
65 |
+
temperature=0.1,
|
66 |
+
top_p=0.75,
|
67 |
+
top_k=40,
|
68 |
+
num_beams=4,
|
69 |
+
)
|
70 |
+
with torch.no_grad():
|
71 |
+
generation_output = model.generate(
|
72 |
+
input_ids=input_ids,
|
73 |
+
generation_config=generation_config,
|
74 |
+
return_dict_in_generate=True,
|
75 |
+
output_scores=True,
|
76 |
+
max_new_tokens=256,
|
77 |
+
)
|
78 |
+
s = generation_output.sequences[0]
|
79 |
+
output = tokenizer.decode(s)
|
80 |
+
print(output.split("### Response:")[1].strip())
|
81 |
+
```
|