AnimateDiff: training and inference setup
Setups for Inference
Prepare Environment
We updated our inference code with xformers and a sequential decoding trick. Now AnimateDiff takes only ~12GB VRAM to inference, and run on a single RTX3090 !!
git clone https://github.com/guoyww/AnimateDiff.git
cd AnimateDiff
conda env create -f environment.yaml
conda activate animatediff
Download Base T2I & Motion Module Checkpoints
We provide two versions of our Motion Module, which are trained on stable-diffusion-v1-4 and finetuned on v1-5 seperately. It's recommanded to try both of them for best results.
git lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5 models/StableDiffusion/
bash download_bashscripts/0-MotionModule.sh
You may also directly download the motion module checkpoints from Google Drive / HuggingFace / CivitAI, then put them in models/Motion_Module/
folder.
Prepare Personalize T2I
Here we provide inference configs for 6 demo T2I on CivitAI. You may run the following bash scripts to download these checkpoints.
bash download_bashscripts/1-ToonYou.sh
bash download_bashscripts/2-Lyriel.sh
bash download_bashscripts/3-RcnzCartoon.sh
bash download_bashscripts/4-MajicMix.sh
bash download_bashscripts/5-RealisticVision.sh
bash download_bashscripts/6-Tusun.sh
bash download_bashscripts/7-FilmVelvia.sh
bash download_bashscripts/8-GhibliBackground.sh
Inference
After downloading the above peronalized T2I checkpoints, run the following commands to generate animations. The results will automatically be saved to samples/
folder.
python -m scripts.animate --config configs/prompts/1-ToonYou.yaml
python -m scripts.animate --config configs/prompts/2-Lyriel.yaml
python -m scripts.animate --config configs/prompts/3-RcnzCartoon.yaml
python -m scripts.animate --config configs/prompts/4-MajicMix.yaml
python -m scripts.animate --config configs/prompts/5-RealisticVision.yaml
python -m scripts.animate --config configs/prompts/6-Tusun.yaml
python -m scripts.animate --config configs/prompts/7-FilmVelvia.yaml
python -m scripts.animate --config configs/prompts/8-GhibliBackground.yaml
To generate animations with a new DreamBooth/LoRA model, you may create a new config .yaml
file in the following format:
NewModel:
inference_config: "[path to motion module config file]"
motion_module:
- "models/Motion_Module/mm_sd_v14.ckpt"
- "models/Motion_Module/mm_sd_v15.ckpt"
motion_module_lora_configs:
- path: "[path to MotionLoRA model]"
alpha: 1.0
- ...
dreambooth_path: "[path to your DreamBooth model .safetensors file]"
lora_model_path: "[path to your LoRA model .safetensors file, leave it empty string if not needed]"
steps: 25
guidance_scale: 7.5
prompt:
- "[positive prompt]"
n_prompt:
- "[negative prompt]"
Then run the following commands:
python -m scripts.animate --config [path to the config file]
Steps for Training
Dataset
Before training, download the videos files and the .csv
annotations of WebVid10M to the local mechine.
Note that our examplar training script requires all the videos to be saved in a single folder. You may change this by modifying animatediff/data/dataset.py
.
Configuration
After dataset preparations, update the below data paths in the config .yaml
files in configs/training/
folder:
train_data:
csv_path: [Replace with .csv Annotation File Path]
video_folder: [Replace with Video Folder Path]
sample_size: 256
Other training parameters (lr, epochs, validation settings, etc.) are also included in the config files.
Training
To train motion modules
torchrun --nnodes=1 --nproc_per_node=1 train.py --config configs/training/training.yaml
To finetune the unet's image layers
torchrun --nnodes=1 --nproc_per_node=1 train.py --config configs/training/image_finetune.yaml