rafael
commited on
Commit
·
a8b22ac
1
Parent(s):
dd6a935
README
Browse files
README.md
CHANGED
@@ -3,196 +3,222 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
### Model Sources [optional]
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
|
119 |
-
|
120 |
|
121 |
#### Metrics
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
|
187 |
-
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
## More Information [optional]
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
194 |
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
## Model Card Contact
|
198 |
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
# Model Card for mAInframer-1
|
|
|
|
|
|
|
7 |
|
8 |
+
Bloob model for auto-complete in the Cobol programming language.
|
9 |
|
10 |
## Model Details
|
11 |
|
12 |
### Model Description
|
13 |
|
14 |
+
mAInframer is a series of models with different parameter counts: 7b, 13b, 34b.
|
|
|
|
|
15 |
|
16 |
+
These models are pretrained on code (Codellama base models) and fine-tuned on Cobol code.
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
18 |
|
19 |
+
- **Developed by: Bloop**
|
20 |
+
- **Finetuned from model: Codellama**
|
|
|
|
|
|
|
21 |
|
22 |
## Uses
|
23 |
|
24 |
+
This model can be used for code completion and fill-in-the middle (Cobol).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
## How to Get Started with the Model
|
27 |
|
28 |
+
Model loading:
|
29 |
+
|
30 |
+
```python
|
31 |
+
import torch
|
32 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
33 |
+
model = AutoModelForCausalLM.from_pretrained("bloopai/mAInframer-7b", device_map="cuda", torch_dtype=torch.bfloat16)
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-7b-hf")
|
35 |
+
```
|
36 |
+
|
37 |
+
### Completion:
|
38 |
+
|
39 |
+
```python
|
40 |
+
prompt = ''' IDENTIFICATION DIVISION.
|
41 |
+
PROGRAM-ID. SUM-OF-CUBES.
|
42 |
+
ENVIRONMENT DIVISION.
|
43 |
+
|
44 |
+
INPUT-OUTPUT SECTION.
|
45 |
+
|
46 |
+
DATA DIVISION.
|
47 |
+
WORKING-STORAGE SECTION.
|
48 |
+
|
49 |
+
01 STEP PIC S9(10).
|
50 |
+
01 CUBE PIC 9(7).
|
51 |
+
01 CUBE-SUM PIC 9(7) VALUE 0.
|
52 |
+
|
53 |
+
LINKAGE SECTION.
|
54 |
+
|
55 |
+
01 LINKED-ITEMS.
|
56 |
+
05 L-MAX-STEP PIC S9(10).
|
57 |
+
05 RESULT PIC S9(10).
|
58 |
+
|
59 |
+
*
|
60 |
+
* Given an integer number, return the sum of the of all the integers below it.
|
61 |
+
*
|
62 |
+
* Example:
|
63 |
+
*
|
64 |
+
* sum_of_cubes(3) == 1**3 + 2**3 == 9
|
65 |
+
* sum_of_cubes(5) == 100
|
66 |
+
*
|
67 |
+
|
68 |
+
* Store the result in the RESULT variable and mark the end of your program with END PROGRAM
|
69 |
+
'''
|
70 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
|
71 |
+
outputs = model.generate(inputs, max_new_tokens=250, use_cache=True, do_sample=False, repetition_penalty=1.1)
|
72 |
+
print(self.tokenizer.decode(outputs[0]))
|
73 |
+
```
|
74 |
+
|
75 |
+
Result:
|
76 |
+
```cobol
|
77 |
+
IDENTIFICATION DIVISION.
|
78 |
+
PROGRAM-ID. SUM-OF-CUBES.
|
79 |
+
ENVIRONMENT DIVISION.
|
80 |
+
|
81 |
+
INPUT-OUTPUT SECTION.
|
82 |
+
|
83 |
+
DATA DIVISION.
|
84 |
+
WORKING-STORAGE SECTION.
|
85 |
+
|
86 |
+
01 STEP PIC S9(10).
|
87 |
+
01 CUBE PIC 9(7).
|
88 |
+
01 CUBE-SUM PIC 9(7) VALUE 0.
|
89 |
+
|
90 |
+
LINKAGE SECTION.
|
91 |
+
|
92 |
+
01 LINKED-ITEMS.
|
93 |
+
05 L-MAX-STEP PIC S9(10).
|
94 |
+
05 RESULT PIC S9(10).
|
95 |
+
|
96 |
+
*
|
97 |
+
* Given an integer number, return the sum of the of all the integers below it.
|
98 |
+
*
|
99 |
+
* Example:
|
100 |
+
*
|
101 |
+
* sum_of_cubes(3) == 1**3 + 2**3 == 9
|
102 |
+
* sum_of_cubes(5) == 100
|
103 |
+
*
|
104 |
+
|
105 |
+
* Store the result in the RESULT variable and mark the end of your program with END PROGRAM
|
106 |
+
|
107 |
+
PROCEDURE DIVISION USING LINKED-ITEMS.
|
108 |
+
MOVE L-MAX-STEP TO STEP.
|
109 |
+
PERFORM VARYING STEP FROM 1 BY 1 UNTIL STEP > L-MAX-STEP
|
110 |
+
COMPUTE CUBE = STEP ** 3
|
111 |
+
ADD CUBE TO CUBE-SUM
|
112 |
+
END-PERFORM.
|
113 |
+
DISPLAY CUBE-SUM.
|
114 |
+
MOVE CUBE-SUM TO RESULT.
|
115 |
+
GOBACK.
|
116 |
+
|
117 |
+
END PROGRAM SUM-OF-CUBES.
|
118 |
+
```
|
119 |
+
|
120 |
+
### Infilling
|
121 |
+
|
122 |
+
Follow the format: `<PRE>prefix<SUF>suffix<MID>`
|
123 |
+
|
124 |
+
To complete `PROCEDURE DIVISION` and infill `WORKING STORAGE SECTION.` to solve [CobolEval](https://github.com/BloopAI/COBOLEval) problems:
|
125 |
+
|
126 |
+
```python
|
127 |
+
prompt = '''<PRE> IDENTIFICATION DIVISION.
|
128 |
+
PROGRAM-ID. SUM-OF-CUBES.
|
129 |
+
ENVIRONMENT DIVISION.
|
130 |
+
|
131 |
+
INPUT-OUTPUT SECTION.
|
132 |
+
|
133 |
+
DATA DIVISION.<SUF>
|
134 |
+
|
135 |
+
LINKAGE SECTION.
|
136 |
+
|
137 |
+
01 LINKED-ITEMS.
|
138 |
+
05 L-MAX-STEP PIC S9(10).
|
139 |
+
05 RESULT PIC S9(10).
|
140 |
+
|
141 |
+
*
|
142 |
+
* Given an integer number, return the sum of the of all the integers below it.
|
143 |
+
*
|
144 |
+
* Example:
|
145 |
+
*
|
146 |
+
* sum_of_cubes(3) == 1**3 + 2**3 == 9
|
147 |
+
* sum_of_cubes(5) == 100
|
148 |
+
*
|
149 |
+
|
150 |
+
* Store the result in the RESULT variable and mark the end of your program with END PROGRAM'''
|
151 |
+
```
|
152 |
+
|
153 |
+
Result:
|
154 |
+
```cobol
|
155 |
+
<PRE> IDENTIFICATION DIVISION.
|
156 |
+
PROGRAM-ID. MAX-ELEMENT.
|
157 |
+
|
158 |
+
ENVIRONMENT DIVISION.
|
159 |
+
|
160 |
+
INPUT-OUTPUT SECTION.
|
161 |
+
|
162 |
+
DATA DIVISION.<SUF>
|
163 |
+
LINKAGE SECTION.
|
164 |
+
|
165 |
+
01 LINKED-ITEMS.
|
166 |
+
05 L-L OCCURS 100 TIMES INDEXED BY NI PIC S9(10).
|
167 |
+
05 RESULT PIC S9(10).
|
168 |
+
|
169 |
+
* Return maximum element in the list.
|
170 |
+
* >>> max_element([1, 2, 3])
|
171 |
+
* 3
|
172 |
+
* >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
|
173 |
+
* 123
|
174 |
+
*
|
175 |
+
|
176 |
+
* Store the result in the RESULT variable and mark the end of your program with END PROGRAM
|
177 |
+
|
178 |
+
PROCEDURE DIVISION USING LINKED-ITEMS.
|
179 |
+
MOVE ZERO TO WS-MAX-VALUE.
|
180 |
+
PERFORM VARYING NI FROM 1 BY 1 UNTIL NI > 100
|
181 |
+
IF L-L (NI) > WS-MAX-VALUE THEN
|
182 |
+
MOVE L-L (NI) TO WS-MAX-VALUE
|
183 |
+
END-IF
|
184 |
+
END-PERFORM.
|
185 |
+
DISPLAY 'THE MAXIMUM ELEMENT IS: ' WS-MAX-VALUE.
|
186 |
+
MOVE WS-MAX-VALUE TO RESULT.
|
187 |
+
GOBACK.
|
188 |
+
|
189 |
+
END PROGRAM MAX-ELEMENT.
|
190 |
+
|
191 |
+
<MID>
|
192 |
+
WORKING-STORAGE SECTION.
|
193 |
+
|
194 |
+
01 WS-MAX-VALUE PIC S9(10) VALUE ZERO.
|
195 |
+
|
196 |
+
```
|
197 |
|
198 |
## Training Details
|
199 |
|
200 |
+
Base model: Codellama
|
201 |
+
Finetuning type: LoRA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
### Training Data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
+
Stack-v2(Cobol) + Stack Overflow (Cobol) + Web scraped Cobol + Synthetic Cobol data
|
206 |
|
207 |
#### Metrics
|
208 |
|
209 |
+
[CobolEval](https://github.com/BloopAI/COBOLEval) is an adaptation of HumanEval where the problems are translated to Cobol.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
| **Model** | CobolEval (pass@1) |
|
212 |
+
|----------------------|--------------------|
|
213 |
+
| **mAInframer-7b** | 6.16 |
|
214 |
+
| **mAInframer-13b** | 8.90 |
|
215 |
+
| **mAInframer-34b** | 10.27 |
|
216 |
|
|
|
217 |
|
218 |
+
## Citation
|
219 |
|
220 |
+
[Blog post]()
|
221 |
|
|
|
222 |
|
223 |
## Model Card Contact
|
224 |
|