blockblockblock commited on
Commit
660fa70
·
verified ·
1 Parent(s): fa44e4a

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - openbmb/UltraFeedback
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ ---
9
+ Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)
10
+
11
+ # Llama-3-Instruct-8B-SPPO-Iter3
12
+
13
+ This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) at iteration 3, based on the [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic.
14
+
15
+
16
+ ## Links to Other Models
17
+ - [Llama-3-Instruct-8B-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1)
18
+ - [Llama-3-Instruct-8B-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2)
19
+ - [Llama-3-Instruct-8B-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3)
20
+
21
+ ### Model Description
22
+
23
+ - Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets.
24
+ - Language(s) (NLP): Primarily English
25
+ - License: Apache-2.0
26
+ - Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct
27
+
28
+
29
+ ## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/)
30
+
31
+
32
+ | Model | LC. Win Rate | Win Rate | Avg. Length |
33
+ |-------------------------------------------|:------------:|:--------:|:-----------:|
34
+ |[Llama-3-8B-SPPO Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1) |31.73 |31.74 | 1962
35
+ |[Llama-3-8B-SPPO Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2) |35.15 |35.98 | 2021
36
+ |[Llama-3-8B-SPPO Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3) |**38.77** |**39.85** | 2066
37
+
38
+
39
+
40
+ ## [Open LLM Leaderboard Evaluation Results](https://github.com/EleutherAI/lm-evaluation-harness)
41
+
42
+ Results are reported by using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) v0.4.1
43
+
44
+ | | arc_challenge | truthfulqa_mc2 | winogrande | gsm8k | hellaswag | mmlu | average |
45
+ |--------|---------------|----------------|------------|-------|-----------|-------|---------|
46
+ |[Llama-3-8B-SPPO Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1) | 63.82 | 54.96 | 76.40 | 75.44 | 79.80 | 65.65 | 69.35
47
+ |[Llama-3-8B-SPPO Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2) | 64.93 | 56.48 | 76.87 | 75.13 | 80.39 | 65.67 | 69.91
48
+ |[Llama-3-8B-SPPO Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3) | 65.19 | 58.04 | 77.11 | 74.91 | 80.86 | 65.60 | **70.29**
49
+
50
+ ### Training hyperparameters
51
+ The following hyperparameters were used during training:
52
+
53
+ - learning_rate: 5e-07
54
+ - eta: 1000
55
+ - per_device_train_batch_size: 8
56
+ - gradient_accumulation_steps: 1
57
+ - seed: 42
58
+ - distributed_type: deepspeed_zero3
59
+ - num_devices: 8
60
+ - optimizer: RMSProp
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_train_epochs: 6.0 (stop at epoch=1.0)
64
+
65
+
66
+
67
+
68
+ ## Citation
69
+ ```
70
+ @misc{wu2024self,
71
+ title={Self-Play Preference Optimization for Language Model Alignment},
72
+ author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
73
+ year={2024},
74
+ eprint={2405.00675},
75
+ archivePrefix={arXiv},
76
+ primaryClass={cs.LG}
77
+ }
78
+ ```