blockblockblock commited on
Commit
da4846e
·
verified ·
1 Parent(s): 11daf04

Upload folder using huggingface_hub

Browse files
.DS_Store ADDED
Binary file (8.2 kB). View file
 
README.md ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-v0.1
3
+ library_name: transformers
4
+ tags:
5
+ - mergekit
6
+ - merge
7
+ - Mistral
8
+ - instruct
9
+ - finetune
10
+ - chatml
11
+ - DPO
12
+ - RLHF
13
+ - gpt4
14
+ - synthetic data
15
+ - distillation
16
+ - function calling
17
+ - json mode
18
+ model-index:
19
+ - name: Hermes-2-Pro-Mistral-10.7B
20
+ results: []
21
+ license: apache-2.0
22
+ language:
23
+ - en
24
+ datasets:
25
+ - teknium/OpenHermes-2.5
26
+ widget:
27
+ - example_title: Hermes 2 Pro
28
+ messages:
29
+ - role: system
30
+ content: You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.
31
+ - role: user
32
+ content: Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.
33
+ ---
34
+
35
+ # Credit for the model card's description goes to ddh0, mergekit, and NousResearch
36
+ # Hermes-2-Pro-Mistral-10.7B
37
+
38
+ This is Hermes-2-Pro-Mistral-10.7B, a depth-upscaled version of [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B).
39
+
40
+ This model is intended to be used as a basis for further fine-tuning, or as a drop-in upgrade from the original 7 billion parameter model.
41
+
42
+ Paper detailing how Depth-Up Scaling works: [SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling](https://arxiv.org/abs/2312.15166)
43
+
44
+ This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
45
+
46
+ ## Merge Details
47
+ ### Merge Method
48
+
49
+ This model was merged using the passthrough merge method.
50
+
51
+ ### Models Merged
52
+
53
+ The following models were included in the merge:
54
+ * /Users/jsarnecki/opt/workspace/NousResearch/Hermes-2-Pro-Mistral-7B
55
+
56
+ ### Configuration
57
+
58
+ The following YAML configuration was used to produce this model:
59
+
60
+ ```yaml
61
+ dtype: bfloat16
62
+ merge_method: passthrough
63
+ # Depth UpScaled (DUS) version of Mistral-7B-Instruct-v0.2
64
+ # where m = 8 (The number of layers to remove from the model)
65
+ # s = 48 (The number of layers the model will have after the DUS)
66
+ slices:
67
+ - sources:
68
+ - layer_range: [0, 24]
69
+ model: /Users/jsarnecki/opt/workspace/NousResearch/Hermes-2-Pro-Mistral-7B
70
+ - sources:
71
+ - layer_range: [8, 32]
72
+ model: /Users/jsarnecki/opt/workspace/NousResearch/Hermes-2-Pro-Mistral-7B
73
+
74
+ ```
75
+
76
+ # Hermes 2 Pro - Mistral 7B
77
+
78
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ggO2sBDJ8Bhc6w-zwTx5j.png)
79
+
80
+ ## Model Description
81
+
82
+ Hermes 2 Pro on Mistral 7B is the new flagship 7B Hermes!
83
+
84
+ Hermes 2 Pro is an upgraded, retrained version of Nous Hermes 2, consisting of an updated and cleaned version of the OpenHermes 2.5 Dataset, as well as a newly introduced Function Calling and JSON Mode dataset developed in-house.
85
+
86
+ This new version of Hermes maintains its excellent general task and conversation capabilities - but also excels at Function Calling, JSON Structured Outputs, and has improved on several other metrics as well, scoring a 90% on our function calling evaluation built in partnership with Fireworks.AI, and an 84% on our structured JSON Output evaluation.
87
+
88
+ Hermes Pro takes advantage of a special system prompt and multi-turn function calling structure with a new chatml role in order to make function calling reliable and easy to parse. Learn more about prompting below.
89
+
90
+ This work was a collaboration between Nous Research, @interstellarninja, and Fireworks.AI
91
+
92
+ Learn more about the function calling system for this model on our github repo here: https://github.com/NousResearch/Hermes-Function-Calling
93
+
94
+ ## Thank you to Latitude.sh for sponsoring compute for this model!
95
+
96
+ ## Example Outputs
97
+
98
+ ### Explaining Problems with Quantum Gravity:
99
+
100
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/y_hPafyyvPb32efC5N4Es.png)
101
+
102
+ ### Roleplaying as a Cosmic Super Intelligence:
103
+
104
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/m6d6Saf7M6Luu9QnXYYAP.png)
105
+
106
+ ### Detailing the Theory of AI Consciousness in JSON
107
+
108
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/MOLybxs7_dLjVys54imO3.png)
109
+
110
+
111
+ # Prompt Format
112
+
113
+ Hermes 2 Pro uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue.
114
+
115
+ System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.
116
+
117
+ This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns.
118
+
119
+ This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI.
120
+
121
+ Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
122
+ ```
123
+ <|im_start|>system
124
+ You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|>
125
+ <|im_start|>user
126
+ Hello, who are you?<|im_end|>
127
+ <|im_start|>assistant
128
+ Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|>
129
+ ```
130
+
131
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
132
+ `tokenizer.apply_chat_template()` method:
133
+
134
+ ```python
135
+ messages = [
136
+ {"role": "system", "content": "You are Hermes 2."},
137
+ {"role": "user", "content": "Hello, who are you?"}
138
+ ]
139
+ gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
140
+ model.generate(**gen_input)
141
+ ```
142
+
143
+ When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
144
+ that the model continues with an assistant response.
145
+
146
+ To utilize the prompt format without a system prompt, simply leave the line out.
147
+
148
+ ## Prompt Format for Function Calling
149
+
150
+ Our model was trained on specific system prompts and structures for Function Calling.
151
+
152
+ You should use the system role with this message, followed by a function signature json as this example shows here.
153
+ ```
154
+ <|im_start|>system
155
+ You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
156
+ <tool_call>
157
+ {"arguments": <args-dict>, "name": <function-name>}
158
+ </tool_call><|im_end|>
159
+ ```
160
+
161
+ To complete the function call, create a user prompt that follows the above system prompt, like so:
162
+ ```
163
+ <|im_start|>user
164
+ Fetch the stock fundamentals data for Tesla (TSLA)<|im_end|>
165
+ ```
166
+
167
+ The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):
168
+ ```
169
+ <|im_start|>assistant
170
+ <tool_call>
171
+ {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"}
172
+ </tool_call><|im_end|>
173
+ ```
174
+
175
+ Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so:
176
+ ```
177
+ <|im_start|>tool
178
+ <tool_response>
179
+ {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}}
180
+ </tool_response>
181
+ <|im_end|>
182
+ ```
183
+
184
+ The assistant will then read in that data from the function's response, and generate a natural language response:
185
+ ```
186
+ <|im_start|>assistant
187
+ The stock fundamentals data for Tesla (TSLA) are as follows:
188
+ - **Symbol**: TSLA
189
+ - **Company Name**: Tesla, Inc.
190
+ - **Sector**: Consumer Cyclical
191
+ - **Industry**: Auto Manufacturers
192
+ - **Market Capitalization**: $566,160,130,480
193
+ - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73
194
+ - **Price-to-Book Ratio (PB Ratio)**: 9.04
195
+ - **Dividend Yield**: N/A
196
+ - **Trailing Earnings Per Share (EPS)**: $4.3
197
+ - **Beta Value of the Stock**: 2.42
198
+ - **52-Week High Price of the Stock**: $299.29
199
+ - **52-Week Low Price of the Stock**: $152.37
200
+
201
+ This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|>
202
+ ```
203
+
204
+ ## Prompt Format for JSON Mode / Structured Outputs
205
+
206
+ Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema.
207
+
208
+ Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main
209
+
210
+ ```
211
+ <|im_start|>system
212
+ You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|>
213
+ ```
214
+
215
+ Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.
216
+
217
+
218
+ # Benchmarks
219
+
220
+ ## GPT4All:
221
+ ```
222
+ | Task |Version| Metric |Value | |Stderr|
223
+ |-------------|------:|--------|-----:|---|-----:|
224
+ |arc_challenge| 0|acc |0.5461|± |0.0145|
225
+ | | |acc_norm|0.5623|± |0.0145|
226
+ |arc_easy | 0|acc |0.8157|± |0.0080|
227
+ | | |acc_norm|0.7934|± |0.0083|
228
+ |boolq | 1|acc |0.8688|± |0.0059|
229
+ |hellaswag | 0|acc |0.6272|± |0.0048|
230
+ | | |acc_norm|0.8057|± |0.0039|
231
+ |openbookqa | 0|acc |0.3360|± |0.0211|
232
+ | | |acc_norm|0.4300|± |0.0222|
233
+ |piqa | 0|acc |0.7954|± |0.0094|
234
+ | | |acc_norm|0.7998|± |0.0093|
235
+ |winogrande | 0|acc |0.7230|± |0.0126|
236
+ ```
237
+ Average: 71.19
238
+
239
+ ## AGIEval:
240
+ ```
241
+ | Task |Version| Metric |Value | |Stderr|
242
+ |------------------------------|------:|--------|-----:|---|-----:|
243
+ |agieval_aqua_rat | 0|acc |0.2047|± |0.0254|
244
+ | | |acc_norm|0.2283|± |0.0264|
245
+ |agieval_logiqa_en | 0|acc |0.3779|± |0.0190|
246
+ | | |acc_norm|0.3932|± |0.0192|
247
+ |agieval_lsat_ar | 0|acc |0.2652|± |0.0292|
248
+ | | |acc_norm|0.2522|± |0.0287|
249
+ |agieval_lsat_lr | 0|acc |0.5216|± |0.0221|
250
+ | | |acc_norm|0.5137|± |0.0222|
251
+ |agieval_lsat_rc | 0|acc |0.5911|± |0.0300|
252
+ | | |acc_norm|0.5836|± |0.0301|
253
+ |agieval_sat_en | 0|acc |0.7427|± |0.0305|
254
+ | | |acc_norm|0.7184|± |0.0314|
255
+ |agieval_sat_en_without_passage| 0|acc |0.4612|± |0.0348|
256
+ | | |acc_norm|0.4466|± |0.0347|
257
+ |agieval_sat_math | 0|acc |0.3818|± |0.0328|
258
+ | | |acc_norm|0.3545|± |0.0323|
259
+ ```
260
+ Average: 44.52
261
+
262
+ ## BigBench:
263
+ ```
264
+ | Task |Version| Metric |Value | |Stderr|
265
+ |------------------------------------------------|------:|---------------------|-----:|---|-----:|
266
+ |bigbench_causal_judgement | 0|multiple_choice_grade|0.5579|± |0.0361|
267
+ |bigbench_date_understanding | 0|multiple_choice_grade|0.6694|± |0.0245|
268
+ |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3333|± |0.0294|
269
+ |bigbench_geometric_shapes | 0|multiple_choice_grade|0.2061|± |0.0214|
270
+ | | |exact_str_match |0.2256|± |0.0221|
271
+ |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.3120|± |0.0207|
272
+ |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2114|± |0.0154|
273
+ |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.4900|± |0.0289|
274
+ |bigbench_movie_recommendation | 0|multiple_choice_grade|0.3600|± |0.0215|
275
+ |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158|
276
+ |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.6660|± |0.0105|
277
+ |bigbench_ruin_names | 0|multiple_choice_grade|0.4420|± |0.0235|
278
+ |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2766|± |0.0142|
279
+ |bigbench_snarks | 0|multiple_choice_grade|0.6630|± |0.0352|
280
+ |bigbench_sports_understanding | 0|multiple_choice_grade|0.6653|± |0.0150|
281
+ |bigbench_temporal_sequences | 0|multiple_choice_grade|0.3190|± |0.0147|
282
+ |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2128|± |0.0116|
283
+ |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1737|± |0.0091|
284
+ |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.4900|± |0.0289|
285
+ ```
286
+ Average: 41.65
287
+
288
+ ## TruthfulQA:
289
+ ```
290
+ | Task |Version|Metric|Value | |Stderr|
291
+ |-------------|------:|------|-----:|---|-----:|
292
+ |truthfulqa_mc| 1|mc1 |0.4100|± |0.0172|
293
+ | | |mc2 |0.5911|± |0.0158|
294
+ ```
295
+
296
+ # Function Calling Evaluations
297
+
298
+ We worked with Fireworks.AI on evaluations by starting off with their Function Calling eval dataset, fixing some unsolveable ones, and generating a second eval dataset for JSON mode.
299
+
300
+ ## Function Calling Accuracy: 91%
301
+
302
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/XF3Zii4-QhE2yjWwHr_v4.png)
303
+
304
+ ## JSON Mode Accuracy: 84%
305
+
306
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/8H2iyjh5wyP2FtLq2LCed.png)
307
+
308
+ Run the evaluator yourself using @interstellarninja's codebase here:
309
+ https://github.com/interstellarninja/function-calling-eval
310
+
311
+ You can find the evaluation datasets here:
312
+ https://huggingface.co/datasets/NousResearch/func-calling-eval
313
+ https://huggingface.co/datasets/NousResearch/json-mode-eval
314
+
315
+
316
+ # Inference Code
317
+
318
+ Here is example code using HuggingFace Transformers to inference the model (note: in 4bit, it will require around 5GB of VRAM)
319
+
320
+ Note: To use function calling, you should see the github repo above.
321
+
322
+ ```python
323
+ # Code to inference Hermes with HF Transformers
324
+ # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages
325
+
326
+ import torch
327
+ from transformers import AutoTokenizer, AutoModelForCausalLM
328
+ from transformers import LlamaTokenizer, MistralForCausalLM
329
+ import bitsandbytes, flash_attn
330
+
331
+ tokenizer = LlamaTokenizer.from_pretrained('NousResearch/Hermes-2-Pro-Mistral-7B', trust_remote_code=True)
332
+ model = MistralForCausalLM.from_pretrained(
333
+ "NousResearch/Hermes-2-Pro-Mistral-7B",
334
+ torch_dtype=torch.float16,
335
+ device_map="auto",
336
+ load_in_8bit=False,
337
+ load_in_4bit=True,
338
+ use_flash_attention_2=True
339
+ )
340
+
341
+ prompts = [
342
+ """<|im_start|>system
343
+ You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
344
+ <|im_start|>user
345
+ Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
346
+ <|im_start|>assistant""",
347
+ ]
348
+
349
+ for chat in prompts:
350
+ print(chat)
351
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
352
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
353
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
354
+ print(f"Response: {response}")
355
+ ```
356
+
357
+
358
+ ## Inference Code for Function Calling:
359
+
360
+ All code for utilizing, parsing, and building function calling templates is available on our github:
361
+ [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling)
362
+
363
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png)
364
+
365
+ # Chat Interfaces
366
+
367
+ When quantized versions of the model are released, I recommend using LM Studio for chatting with Hermes 2 Pro. It does not support function calling - for that use our github repo. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box.
368
+ In LM-Studio, simply select the ChatML Prefix on the settings side pane:
369
+
370
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png)
371
+
372
+
373
+ ## Quantized Versions:
374
+
375
+ GGUF Versions Available Here: https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF
376
+
377
+ # How to cite:
378
+
379
+ ```bibtext
380
+ @misc{Hermes-2-Pro-Mistral-7B,
381
+ url={[https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B]https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)},
382
+ title={Hermes-2-Pro-Mistral-7B},
383
+ author={"interstellarninja", "Teknium", "theemozilla", "karan4d", "huemin_art"}
384
+ }
385
+ ```
386
+
387
+
388
+
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<|im_end|>": 32000,
3
+ "<|im_start|>": 32001
4
+ }
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/Users/jsarnecki/opt/workspace/NousResearch/Hermes-2-Pro-Mistral-7B",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 32000,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 48,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 10000.0,
20
+ "sliding_window": 4096,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.39.0.dev0",
24
+ "use_cache": false,
25
+ "vocab_size": 32032,
26
+ "quantization_config": {
27
+ "quant_method": "exl2",
28
+ "version": "0.0.16",
29
+ "bits": 3.7,
30
+ "head_bits": 6,
31
+ "calibration": {
32
+ "rows": 100,
33
+ "length": 2048,
34
+ "dataset": "(default)"
35
+ }
36
+ }
37
+ }
mergekit_config.yml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dtype: bfloat16
2
+ merge_method: passthrough
3
+ # Depth UpScaled (DUS) version of Mistral-7B-Instruct-v0.2
4
+ # where m = 8 (The number of layers to remove from the model)
5
+ # s = 48 (The number of layers the model will have after the DUS)
6
+ slices:
7
+ - sources:
8
+ - layer_range: [0, 24]
9
+ model: /Users/jsarnecki/opt/workspace/NousResearch/Hermes-2-Pro-Mistral-7B
10
+ - sources:
11
+ - layer_range: [8, 32]
12
+ model: /Users/jsarnecki/opt/workspace/NousResearch/Hermes-2-Pro-Mistral-7B
model.safetensors.index.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metadata": {"mergekit_version": "0.0.4.2", "total_size": 21463572480}, "weight_map": {"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", "model.layers.7.mlp.down_proj.weight": "model-00001-of-00006.safetensors", "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", "model.layers.7.mlp.up_proj.weight": "model-00001-of-00006.safetensors", "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", "model.layers.7.input_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors", "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", "model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors", "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", "model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors", "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors", "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors", "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors", "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors", "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors", "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors", "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors", "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors", "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors", "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors", "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors", "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors", "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors", "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors", "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors", "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors", "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors", "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors", "model.embed_tokens.weight": "model-00002-of-00006.safetensors", "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", "model.layers.32.mlp.down_proj.weight": "model-00002-of-00006.safetensors", "model.layers.16.mlp.down_proj.weight": "model-00002-of-00006.safetensors", "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", "model.layers.32.mlp.up_proj.weight": "model-00002-of-00006.safetensors", "model.layers.16.mlp.up_proj.weight": "model-00002-of-00006.safetensors", "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", "model.layers.32.input_layernorm.weight": "model-00002-of-00006.safetensors", "model.layers.16.input_layernorm.weight": "model-00002-of-00006.safetensors", "model.layers.31.mlp.down_proj.weight": "model-00002-of-00006.safetensors", "model.layers.15.mlp.down_proj.weight": "model-00002-of-00006.safetensors", "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", "model.layers.31.mlp.up_proj.weight": "model-00002-of-00006.safetensors", "model.layers.15.mlp.up_proj.weight": "model-00002-of-00006.safetensors", "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", "model.layers.31.input_layernorm.weight": "model-00002-of-00006.safetensors", "model.layers.15.input_layernorm.weight": "model-00002-of-00006.safetensors", "model.layers.30.mlp.down_proj.weight": "model-00002-of-00006.safetensors", "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors", "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", "model.layers.30.mlp.up_proj.weight": "model-00002-of-00006.safetensors", "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors", "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors", "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors", "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors", "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors", "model.layers.30.input_layernorm.weight": "model-00002-of-00006.safetensors", "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors", "model.layers.29.mlp.down_proj.weight": "model-00002-of-00006.safetensors", "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors", "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors", "model.layers.29.mlp.up_proj.weight": "model-00002-of-00006.safetensors", "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors", "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors", "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", "model.layers.29.input_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.28.mlp.down_proj.weight": "model-00003-of-00006.safetensors", "model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors", "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", "model.layers.28.mlp.up_proj.weight": "model-00003-of-00006.safetensors", "model.layers.12.mlp.up_proj.weight": "model-00003-of-00006.safetensors", "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", "model.layers.28.input_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.27.mlp.down_proj.weight": "model-00003-of-00006.safetensors", "model.layers.11.mlp.down_proj.weight": "model-00003-of-00006.safetensors", "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", "model.layers.27.mlp.up_proj.weight": "model-00003-of-00006.safetensors", "model.layers.11.mlp.up_proj.weight": "model-00003-of-00006.safetensors", "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", "model.layers.27.input_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.11.input_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.26.mlp.down_proj.weight": "model-00003-of-00006.safetensors", "model.layers.10.mlp.down_proj.weight": "model-00003-of-00006.safetensors", "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", "model.layers.26.mlp.up_proj.weight": "model-00003-of-00006.safetensors", "model.layers.10.mlp.up_proj.weight": "model-00003-of-00006.safetensors", "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", "model.layers.26.input_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.10.input_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.25.mlp.down_proj.weight": "model-00003-of-00006.safetensors", "model.layers.9.mlp.down_proj.weight": "model-00003-of-00006.safetensors", "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00006.safetensors", "model.layers.25.mlp.up_proj.weight": "model-00003-of-00006.safetensors", "model.layers.9.mlp.up_proj.weight": "model-00003-of-00006.safetensors", "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00006.safetensors", "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00006.safetensors", "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00006.safetensors", "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00006.safetensors", "model.layers.25.input_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.9.input_layernorm.weight": "model-00003-of-00006.safetensors", "model.layers.24.mlp.down_proj.weight": "model-00003-of-00006.safetensors", "model.layers.8.mlp.down_proj.weight": "model-00003-of-00006.safetensors", "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors", "model.layers.8.mlp.up_proj.weight": "model-00004-of-00006.safetensors", "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.8.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.8.input_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.42.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", "model.layers.42.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", "model.layers.42.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", "model.layers.42.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", "model.layers.42.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", "model.layers.41.mlp.down_proj.weight": "model-00004-of-00006.safetensors", "model.layers.41.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", "model.layers.41.mlp.up_proj.weight": "model-00004-of-00006.safetensors", "model.layers.41.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.41.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", "model.layers.41.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", "model.layers.41.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", "model.layers.41.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", "model.layers.41.input_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.40.mlp.down_proj.weight": "model-00004-of-00006.safetensors", "model.layers.40.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", "model.layers.40.mlp.up_proj.weight": "model-00004-of-00006.safetensors", "model.layers.40.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.40.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", "model.layers.40.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", "model.layers.40.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", "model.layers.40.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", "model.layers.40.input_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.39.mlp.down_proj.weight": "model-00004-of-00006.safetensors", "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors", "model.layers.39.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", "model.layers.39.mlp.up_proj.weight": "model-00004-of-00006.safetensors", "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors", "model.layers.39.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.39.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", "model.layers.39.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", "model.layers.39.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", "model.layers.39.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", "model.layers.39.input_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.38.mlp.down_proj.weight": "model-00004-of-00006.safetensors", "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors", "model.layers.38.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", "model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", "model.layers.38.mlp.up_proj.weight": "model-00004-of-00006.safetensors", "model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors", "model.layers.38.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.38.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", "model.layers.38.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", "model.layers.38.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", "model.layers.38.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", "model.layers.38.input_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.37.mlp.down_proj.weight": "model-00004-of-00006.safetensors", "model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors", "model.layers.37.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", "model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors", "model.layers.37.mlp.up_proj.weight": "model-00004-of-00006.safetensors", "model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors", "model.layers.37.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.37.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors", "model.layers.37.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors", "model.layers.37.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors", "model.layers.37.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors", "model.layers.37.input_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors", "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors", "model.layers.20.mlp.down_proj.weight": "model-00005-of-00006.safetensors", "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors", "model.layers.20.mlp.up_proj.weight": "model-00005-of-00006.safetensors", "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.20.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.20.input_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors", "model.layers.19.mlp.down_proj.weight": "model-00005-of-00006.safetensors", "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", "model.layers.19.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors", "model.layers.19.mlp.up_proj.weight": "model-00005-of-00006.safetensors", "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.19.input_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors", "model.layers.18.mlp.down_proj.weight": "model-00005-of-00006.safetensors", "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", "model.layers.18.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors", "model.layers.18.mlp.up_proj.weight": "model-00005-of-00006.safetensors", "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", "model.layers.18.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", "model.layers.18.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", "model.layers.18.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", "model.layers.18.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.18.input_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors", "model.layers.17.mlp.down_proj.weight": "model-00005-of-00006.safetensors", "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors", "model.layers.17.mlp.up_proj.weight": "model-00005-of-00006.safetensors", "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.17.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.17.input_layernorm.weight": "model-00005-of-00006.safetensors", "lm_head.weight": "model-00005-of-00006.safetensors", "model.norm.weight": "model-00005-of-00006.safetensors", "model.layers.47.mlp.down_proj.weight": "model-00005-of-00006.safetensors", "model.layers.47.mlp.gate_proj.weight": "model-00005-of-00006.safetensors", "model.layers.47.mlp.up_proj.weight": "model-00005-of-00006.safetensors", "model.layers.47.post_attention_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.47.self_attn.o_proj.weight": "model-00005-of-00006.safetensors", "model.layers.47.self_attn.v_proj.weight": "model-00005-of-00006.safetensors", "model.layers.47.self_attn.k_proj.weight": "model-00005-of-00006.safetensors", "model.layers.47.self_attn.q_proj.weight": "model-00005-of-00006.safetensors", "model.layers.47.input_layernorm.weight": "model-00005-of-00006.safetensors", "model.layers.46.mlp.down_proj.weight": "model-00005-of-00006.safetensors", "model.layers.46.mlp.gate_proj.weight": "model-00006-of-00006.safetensors", "model.layers.46.mlp.up_proj.weight": "model-00006-of-00006.safetensors", "model.layers.46.post_attention_layernorm.weight": "model-00006-of-00006.safetensors", "model.layers.46.self_attn.o_proj.weight": "model-00006-of-00006.safetensors", "model.layers.46.self_attn.v_proj.weight": "model-00006-of-00006.safetensors", "model.layers.46.self_attn.k_proj.weight": "model-00006-of-00006.safetensors", "model.layers.46.self_attn.q_proj.weight": "model-00006-of-00006.safetensors", "model.layers.46.input_layernorm.weight": "model-00006-of-00006.safetensors", "model.layers.45.mlp.down_proj.weight": "model-00006-of-00006.safetensors", "model.layers.45.mlp.gate_proj.weight": "model-00006-of-00006.safetensors", "model.layers.45.mlp.up_proj.weight": "model-00006-of-00006.safetensors", "model.layers.45.post_attention_layernorm.weight": "model-00006-of-00006.safetensors", "model.layers.45.self_attn.o_proj.weight": "model-00006-of-00006.safetensors", "model.layers.45.self_attn.v_proj.weight": "model-00006-of-00006.safetensors", "model.layers.45.self_attn.k_proj.weight": "model-00006-of-00006.safetensors", "model.layers.45.self_attn.q_proj.weight": "model-00006-of-00006.safetensors", "model.layers.45.input_layernorm.weight": "model-00006-of-00006.safetensors", "model.layers.44.mlp.down_proj.weight": "model-00006-of-00006.safetensors", "model.layers.44.mlp.gate_proj.weight": "model-00006-of-00006.safetensors", "model.layers.44.mlp.up_proj.weight": "model-00006-of-00006.safetensors", "model.layers.44.post_attention_layernorm.weight": "model-00006-of-00006.safetensors", "model.layers.44.self_attn.o_proj.weight": "model-00006-of-00006.safetensors", "model.layers.44.self_attn.v_proj.weight": "model-00006-of-00006.safetensors", "model.layers.44.self_attn.k_proj.weight": "model-00006-of-00006.safetensors", "model.layers.44.self_attn.q_proj.weight": "model-00006-of-00006.safetensors", "model.layers.44.input_layernorm.weight": "model-00006-of-00006.safetensors", "model.layers.43.mlp.down_proj.weight": "model-00006-of-00006.safetensors", "model.layers.43.mlp.gate_proj.weight": "model-00006-of-00006.safetensors", "model.layers.43.mlp.up_proj.weight": "model-00006-of-00006.safetensors", "model.layers.43.post_attention_layernorm.weight": "model-00006-of-00006.safetensors", "model.layers.43.self_attn.o_proj.weight": "model-00006-of-00006.safetensors", "model.layers.43.self_attn.v_proj.weight": "model-00006-of-00006.safetensors", "model.layers.43.self_attn.k_proj.weight": "model-00006-of-00006.safetensors", "model.layers.43.self_attn.q_proj.weight": "model-00006-of-00006.safetensors", "model.layers.43.input_layernorm.weight": "model-00006-of-00006.safetensors", "model.layers.42.mlp.down_proj.weight": "model-00006-of-00006.safetensors", "model.layers.42.mlp.up_proj.weight": "model-00006-of-00006.safetensors", "model.layers.42.post_attention_layernorm.weight": "model-00006-of-00006.safetensors", "model.layers.42.input_layernorm.weight": "model-00006-of-00006.safetensors"}}
output.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6eca43970445c3a960e7e909264959b3b7746d8095d570399870911b7d220792
3
+ size 5207922972
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "<|im_end|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|im_start|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ }
46
+ },
47
+ "additional_special_tokens": [],
48
+ "bos_token": "<s>",
49
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
50
+ "clean_up_tokenization_spaces": false,
51
+ "eos_token": "<|im_end|>",
52
+ "legacy": true,
53
+ "model_max_length": 1000000000000000019884624838656,
54
+ "pad_token": "</s>",
55
+ "sp_model_kwargs": {},
56
+ "spaces_between_special_tokens": false,
57
+ "tokenizer_class": "LlamaTokenizer",
58
+ "unk_token": "<unk>",
59
+ "use_default_system_prompt": false,
60
+ "use_fast": true
61
+ }