|
import argparse |
|
import random |
|
import torch |
|
from os import path as osp |
|
|
|
from basicsr.data import create_dataloader, create_dataset |
|
from basicsr.models import create_model |
|
from basicsr.utils import (check_resume, make_exp_dirs, mkdir_and_rename, set_random_seed) |
|
from basicsr.utils.dist_util import get_dist_info, init_dist |
|
from basicsr.utils.options import parse |
|
from basicsr.utils.nano import psf2otf |
|
|
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
def parse_options(is_train=True): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
'-opt', type=str, required=True, help='Path to option YAML file.') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm'], |
|
default='none', |
|
help='job launcher') |
|
parser.add_argument( |
|
'--name', |
|
default=None, |
|
help='job launcher') |
|
import sys |
|
vv = sys.version_info.minor |
|
parser.add_argument('--local-rank', type=int, default=0) |
|
parser.add_argument('--local_rank', type=int, default=0) |
|
args = parser.parse_args() |
|
opt = parse(args.opt, is_train=is_train, name=args.name if args.name is not None and args.name != "" else None) |
|
|
|
|
|
|
|
if args.launcher == 'none': |
|
opt['dist'] = False |
|
print('Disable distributed.', flush=True) |
|
else: |
|
opt['dist'] = True |
|
if args.launcher == 'slurm' and 'dist_params' in opt: |
|
init_dist(args.launcher, **opt['dist_params']) |
|
else: |
|
init_dist(args.launcher) |
|
print('init dist .. ', args.launcher) |
|
|
|
opt['rank'], opt['world_size'] = get_dist_info() |
|
|
|
|
|
seed = opt.get('manual_seed') |
|
if seed is None: |
|
seed = random.randint(1, 10000) |
|
opt['manual_seed'] = seed |
|
set_random_seed(seed + opt['rank']) |
|
|
|
return opt |
|
|
|
|
|
def main(): |
|
|
|
opt = parse_options(is_train=True) |
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
state_folder_path = 'experiments/{}/training_states/'.format(opt['name']) |
|
import os |
|
try: |
|
states = os.listdir(state_folder_path) |
|
except: |
|
states = [] |
|
resume_state = None |
|
if len(states) > 0: |
|
max_state_file = '{}.state'.format(max([int(x[0:-6]) for x in states])) |
|
resume_state = os.path.join(state_folder_path, max_state_file) |
|
opt['path']['resume_state'] = resume_state |
|
|
|
|
|
if opt['path'].get('resume_state'): |
|
device_id = torch.cuda.current_device() |
|
resume_state = torch.load( |
|
opt['path']['resume_state'], |
|
map_location=lambda storage, loc: storage.cuda(device_id)) |
|
else: |
|
resume_state = None |
|
|
|
|
|
if resume_state is None: |
|
make_exp_dirs(opt) |
|
if opt['logger'].get('use_tb_logger') and 'debug' not in opt[ |
|
'name'] and opt['rank'] == 0: |
|
mkdir_and_rename(osp.join('tb_logger', opt['name'])) |
|
|
|
|
|
|
|
ks_params = opt['train'].get('ks', None) |
|
if not ks_params: |
|
raise NotImplementedError |
|
M = ks_params['num'] |
|
ks = torch.logspace(ks_params['start'], ks_params['end'], M) |
|
ks = ks.view(1,M,1,1,1,1).to("cuda") |
|
|
|
val_conv = opt['val'].get("apply_conv", True) |
|
|
|
|
|
if resume_state: |
|
check_resume(opt, resume_state['iter']) |
|
model = create_model(opt) |
|
model.resume_training(resume_state) |
|
current_iter = resume_state['iter'] |
|
|
|
else: |
|
model = create_model(opt) |
|
current_iter = 0 |
|
|
|
|
|
psf = torch.tensor(np.load("./psf.npy")).to("cuda") |
|
_,psf_h,psf_w,_ = psf.shape |
|
otf = psf2otf(psf, h=psf_h*3, w=psf_w*3, permute=True)[None] |
|
|
|
dataset_opt = opt['datasets']['val'] |
|
|
|
val_set = create_dataset(dataset_opt) |
|
val_loader = create_dataloader( |
|
val_set, |
|
dataset_opt, |
|
num_gpu=opt['num_gpu'], |
|
dist=opt['dist'], |
|
sampler=None, |
|
seed=opt['manual_seed']) |
|
|
|
print("Start validation on spatially varying aberrration") |
|
rgb2bgr = opt['val'].get('rgb2bgr', True) |
|
use_image = opt['val'].get('use_image', True) |
|
psnr, others = model.validation(val_loader, current_iter, None, True, rgb2bgr, use_image, psf=otf, ks=ks, val_conv=val_conv) |
|
print("==================") |
|
print(f"Test results: PSNR: {psnr:.2f}, SSIM: {others['ssim']:.4f}, LPIPS: {others['lpips']:.4f}\n") |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|