import argparse import random import torch from os import path as osp from basicsr.data import create_dataloader, create_dataset from basicsr.models import create_model from basicsr.utils import (check_resume, make_exp_dirs, mkdir_and_rename, set_random_seed) from basicsr.utils.dist_util import get_dist_info, init_dist from basicsr.utils.options import parse from basicsr.utils.nano import psf2otf import numpy as np from tqdm import tqdm def parse_options(is_train=True): parser = argparse.ArgumentParser() parser.add_argument( '-opt', type=str, required=True, help='Path to option YAML file.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher') parser.add_argument( '--name', default=None, help='job launcher') import sys vv = sys.version_info.minor parser.add_argument('--local-rank', type=int, default=0) parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() opt = parse(args.opt, is_train=is_train, name=args.name if args.name is not None and args.name != "" else None) # distributed settings if args.launcher == 'none': opt['dist'] = False print('Disable distributed.', flush=True) else: opt['dist'] = True if args.launcher == 'slurm' and 'dist_params' in opt: init_dist(args.launcher, **opt['dist_params']) else: init_dist(args.launcher) print('init dist .. ', args.launcher) opt['rank'], opt['world_size'] = get_dist_info() # random seed seed = opt.get('manual_seed') if seed is None: seed = random.randint(1, 10000) opt['manual_seed'] = seed set_random_seed(seed + opt['rank']) return opt def main(): # parse options, set distributed setting, set ramdom seed opt = parse_options(is_train=True) torch.backends.cudnn.benchmark = True # automatic resume .. state_folder_path = 'experiments/{}/training_states/'.format(opt['name']) import os try: states = os.listdir(state_folder_path) except: states = [] resume_state = None if len(states) > 0: max_state_file = '{}.state'.format(max([int(x[0:-6]) for x in states])) resume_state = os.path.join(state_folder_path, max_state_file) opt['path']['resume_state'] = resume_state # load resume states if necessary if opt['path'].get('resume_state'): device_id = torch.cuda.current_device() resume_state = torch.load( opt['path']['resume_state'], map_location=lambda storage, loc: storage.cuda(device_id)) else: resume_state = None # mkdir for experiments and logger if resume_state is None: make_exp_dirs(opt) if opt['logger'].get('use_tb_logger') and 'debug' not in opt[ 'name'] and opt['rank'] == 0: mkdir_and_rename(osp.join('tb_logger', opt['name'])) # define ks for Wiener filters ks_params = opt['train'].get('ks', None) if not ks_params: raise NotImplementedError M = ks_params['num'] ks = torch.logspace(ks_params['start'], ks_params['end'], M) ks = ks.view(1,M,1,1,1,1).to("cuda") val_conv = opt['val'].get("apply_conv", True) # create model if resume_state: # resume training check_resume(opt, resume_state['iter']) model = create_model(opt) model.resume_training(resume_state) # handle optimizers and schedulers current_iter = resume_state['iter'] else: model = create_model(opt) current_iter = 0 # load psf psf = torch.tensor(np.load("./psf.npy")).to("cuda") _,psf_h,psf_w,_ = psf.shape otf = psf2otf(psf, h=psf_h*3, w=psf_w*3, permute=True)[None] dataset_opt = opt['datasets']['val'] val_set = create_dataset(dataset_opt) val_loader = create_dataloader( val_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed']) print("Start validation on spatially varying aberrration") rgb2bgr = opt['val'].get('rgb2bgr', True) use_image = opt['val'].get('use_image', True) psnr, others = model.validation(val_loader, current_iter, None, True, rgb2bgr, use_image, psf=otf, ks=ks, val_conv=val_conv) print("==================") print(f"Test results: PSNR: {psnr:.2f}, SSIM: {others['ssim']:.4f}, LPIPS: {others['lpips']:.4f}\n") if __name__ == '__main__': main()