UZBTTS / README.md
Rifat Mamayusupov
Update README.md
39cc8c0 verified
---
license: mit
tags:
- generated_from_trainer
base_model: microsoft/speecht5_tts
model-index:
- name: speecht5_finetuned_voxpopuli_nl
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# UzbTTS
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5190
## Model description
UZBTTS - bu asason 250 MB Text2Audio datasetga (microsoft/speecht5_tts) modeliga fine-tuned qilindi, natija datasetga yarasha yaxshi.
Agar siz buni modelni foydalanishini xoxlasangiz.
example:
```
#dastlab run qiling :
!pip install transformers datasets
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
processor = SpeechT5Processor.from_pretrained("ai-nightcoder/UZBTTS")
model = SpeechT5ForTextToSpeech.from_pretrained("ai-nightcoder/UZBTTS")
# ***************************************************************************
text = "O‘zbekistonda import qilingan sovitkich,
muzlatkich va konditsionerlarni energosamaradorlik bo‘yicha sinovdan o‘tkazish boshlandi.
Kun.uz'ga murojaat qilgan importchi tadbirkorlarga ko‘ra, bu yangilik ham vaqt,
ham naqd nuqtayi nazaridan yangi xarajatlarga olib kelgan.
Kelgusida bunday tekshiruv boshqa turdagi maishiy texnikalarga ham joriy etilishi kutilyapti."
inputs = processor(text=text, return_tensors="pt")
# ***************************************************************************
from datasets import load_dataset
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
import torch
# voice clone uchun ham ishlatilsa bo'ladi.
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
from transformers import SpeechT5HifiGan
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# ****************************************************************************
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
from IPython.display import Audio
Audio(speech, rate=16000)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.479 | 137.93 | 1000 | 0.5174 |
| 0.4318 | 275.86 | 2000 | 0.5177 |
| 0.4111 | 413.79 | 3000 | 0.5302 |
| 0.4081 | 551.72 | 4000 | 0.5190 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1