|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: 10_epochs_camembert_jb |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 10_epochs_camembert_jb |
|
|
|
This model is a fine-tuned version of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1070 |
|
- Overall Precision: 0.8279 |
|
- Overall Recall: 0.8660 |
|
- Overall F1: 0.8465 |
|
- Overall Accuracy: 0.9803 |
|
- Er F1: 0.8617 |
|
- Oc F1: 0.8347 |
|
- Umanprod F1: 0.7297 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Er F1 | Oc F1 | Umanprod F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:------:|:------:|:-----------:| |
|
| 0.2805 | 1.0 | 613 | 0.0797 | 0.7802 | 0.7990 | 0.7895 | 0.9749 | 0.8187 | 0.7677 | 0.4231 | |
|
| 0.072 | 2.0 | 1226 | 0.0790 | 0.8060 | 0.8392 | 0.8223 | 0.9773 | 0.8458 | 0.8050 | 0.5574 | |
|
| 0.0511 | 3.0 | 1839 | 0.0807 | 0.8139 | 0.8623 | 0.8374 | 0.9789 | 0.8583 | 0.8200 | 0.6933 | |
|
| 0.0354 | 4.0 | 2452 | 0.0808 | 0.8097 | 0.8574 | 0.8329 | 0.9793 | 0.8589 | 0.8115 | 0.6667 | |
|
| 0.0198 | 5.0 | 3065 | 0.0940 | 0.7936 | 0.8591 | 0.8250 | 0.9781 | 0.8426 | 0.8124 | 0.6835 | |
|
| 0.0165 | 6.0 | 3678 | 0.0988 | 0.8350 | 0.8542 | 0.8445 | 0.9802 | 0.8656 | 0.8297 | 0.6486 | |
|
| 0.0126 | 7.0 | 4291 | 0.0990 | 0.8292 | 0.8692 | 0.8488 | 0.9805 | 0.8682 | 0.8340 | 0.6849 | |
|
| 0.0103 | 8.0 | 4904 | 0.1042 | 0.8246 | 0.8666 | 0.8450 | 0.9803 | 0.8630 | 0.8331 | 0.6575 | |
|
| 0.0076 | 9.0 | 5517 | 0.1066 | 0.8195 | 0.8687 | 0.8434 | 0.9801 | 0.8593 | 0.8305 | 0.7297 | |
|
| 0.0066 | 10.0 | 6130 | 0.1070 | 0.8279 | 0.8660 | 0.8465 | 0.9803 | 0.8617 | 0.8347 | 0.7297 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.0+cpu |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|