bjubert's picture
update model card README.md
22054d6
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: 10_epochs_camembert_jb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 10_epochs_camembert_jb
This model is a fine-tuned version of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1070
- Overall Precision: 0.8279
- Overall Recall: 0.8660
- Overall F1: 0.8465
- Overall Accuracy: 0.9803
- Er F1: 0.8617
- Oc F1: 0.8347
- Umanprod F1: 0.7297
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Er F1 | Oc F1 | Umanprod F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:------:|:------:|:-----------:|
| 0.2805 | 1.0 | 613 | 0.0797 | 0.7802 | 0.7990 | 0.7895 | 0.9749 | 0.8187 | 0.7677 | 0.4231 |
| 0.072 | 2.0 | 1226 | 0.0790 | 0.8060 | 0.8392 | 0.8223 | 0.9773 | 0.8458 | 0.8050 | 0.5574 |
| 0.0511 | 3.0 | 1839 | 0.0807 | 0.8139 | 0.8623 | 0.8374 | 0.9789 | 0.8583 | 0.8200 | 0.6933 |
| 0.0354 | 4.0 | 2452 | 0.0808 | 0.8097 | 0.8574 | 0.8329 | 0.9793 | 0.8589 | 0.8115 | 0.6667 |
| 0.0198 | 5.0 | 3065 | 0.0940 | 0.7936 | 0.8591 | 0.8250 | 0.9781 | 0.8426 | 0.8124 | 0.6835 |
| 0.0165 | 6.0 | 3678 | 0.0988 | 0.8350 | 0.8542 | 0.8445 | 0.9802 | 0.8656 | 0.8297 | 0.6486 |
| 0.0126 | 7.0 | 4291 | 0.0990 | 0.8292 | 0.8692 | 0.8488 | 0.9805 | 0.8682 | 0.8340 | 0.6849 |
| 0.0103 | 8.0 | 4904 | 0.1042 | 0.8246 | 0.8666 | 0.8450 | 0.9803 | 0.8630 | 0.8331 | 0.6575 |
| 0.0076 | 9.0 | 5517 | 0.1066 | 0.8195 | 0.8687 | 0.8434 | 0.9801 | 0.8593 | 0.8305 | 0.7297 |
| 0.0066 | 10.0 | 6130 | 0.1070 | 0.8279 | 0.8660 | 0.8465 | 0.9803 | 0.8617 | 0.8347 | 0.7297 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cpu
- Datasets 2.7.1
- Tokenizers 0.13.2