|
---
|
|
license: cc-by-nc-sa-4.0
|
|
base_model: microsoft/layoutlmv3-base
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- violations
|
|
metrics:
|
|
- precision
|
|
- recall
|
|
- f1
|
|
- accuracy
|
|
model-index:
|
|
- name: layoutlmv3-violations-test
|
|
results:
|
|
- task:
|
|
name: Token Classification
|
|
type: token-classification
|
|
dataset:
|
|
name: violations
|
|
type: violations
|
|
config: ViolationsExtraction
|
|
split: test
|
|
args: ViolationsExtraction
|
|
metrics:
|
|
- name: Precision
|
|
type: precision
|
|
value: 0.9482758620689655
|
|
- name: Recall
|
|
type: recall
|
|
value: 0.9116022099447514
|
|
- name: F1
|
|
type: f1
|
|
value: 0.9295774647887324
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.9502762430939227
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# layoutlmv3-violations-test
|
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the violations dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.3685
|
|
- Precision: 0.9483
|
|
- Recall: 0.9116
|
|
- F1: 0.9296
|
|
- Accuracy: 0.9503
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 1e-05
|
|
- train_batch_size: 8
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- training_steps: 1000
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
|
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
|
| No log | 9.0909 | 100 | 0.2997 | 0.9543 | 0.9227 | 0.9382 | 0.9558 |
|
|
| No log | 18.1818 | 200 | 0.3729 | 0.9425 | 0.9061 | 0.9239 | 0.9448 |
|
|
| No log | 27.2727 | 300 | 0.3408 | 0.9543 | 0.9227 | 0.9382 | 0.9558 |
|
|
| No log | 36.3636 | 400 | 0.3566 | 0.9483 | 0.9116 | 0.9296 | 0.9503 |
|
|
| 0.0997 | 45.4545 | 500 | 0.3685 | 0.9483 | 0.9116 | 0.9296 | 0.9503 |
|
|
| 0.0997 | 54.5455 | 600 | 0.3736 | 0.9483 | 0.9116 | 0.9296 | 0.9503 |
|
|
| 0.0997 | 63.6364 | 700 | 0.3866 | 0.9483 | 0.9116 | 0.9296 | 0.9503 |
|
|
| 0.0997 | 72.7273 | 800 | 0.3990 | 0.9483 | 0.9116 | 0.9296 | 0.9503 |
|
|
| 0.0997 | 81.8182 | 900 | 0.4018 | 0.9483 | 0.9116 | 0.9296 | 0.9503 |
|
|
| 0.001 | 90.9091 | 1000 | 0.3979 | 0.9483 | 0.9116 | 0.9296 | 0.9503 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.42.1
|
|
- Pytorch 2.3.1+cu118
|
|
- Datasets 2.20.0
|
|
- Tokenizers 0.19.1
|
|
|