|
|
|
--- |
|
license: bigcode-openrail-m |
|
datasets: |
|
- bigcode/guanaco-commits |
|
metrics: |
|
- code_eval |
|
library_name: peft |
|
tags: |
|
- code |
|
--- |
|
# Astraios: Parameter-Efficient Instruction Tuning Code Large Language Models |
|
<p align="center" width="100%"> |
|
<a ><img src="https://github.com/bigcode-project/astraios/blob/main/visuals/banner.png?raw=true" alt="Astraios" style="width: 20%; min-width: 300px; display: block; margin: auto;"></a> |
|
</p> |
|
|
|
# Table of Contents |
|
|
|
1. [Model Summary](#model-summary) |
|
2. [Use](#use) |
|
3. [Training](#training) |
|
4. [Citation](#citation) |
|
|
|
# Model Summary |
|
|
|
> Astraios-1B-IA3 is an instruction tuned model with 15.5B parameters created by finetuning StarCoderBase on CommitPackFT & OASST as described in the Astraios paper. |
|
|
|
- **Repository:** [bigcode-project/astraios](https://github.com/bigcode-project/astraios) |
|
- **Paper:** [Astraios: Parameter-Efficient Instruction Tuning Code Large Language Models]() |
|
- **Languages:** 80+ Programming languages |
|
- **✨Astraios:** |
|
<table> |
|
<tr> |
|
<th>Data</t> |
|
<td><a href=https://huggingface.co/datasets/bigcode/guanaco-commits>CommitPackFT+OASST</a></td> |
|
<td>Filtered version of CommitPack and OASST for high-quality commit messages that resemble instructions</td> |
|
</tr> |
|
<tr> |
|
<th>Model</t> |
|
<td><a href=https://huggingface.co/collections/bigcode/astraios-1b-6576ff1b8e449026ae327c1c>Astraios-1B</a></td> |
|
<td>Collection of StarCoderBase-1B models instruction tuned on CommitPackFT + OASST with different tuning methods</td> |
|
</tr> |
|
<tr> |
|
<th></t> |
|
<td><a href=https://huggingface.co/collections/bigcode/astraios-3b-6577127317ee44ff547252d3>Astraios-3B</a></td> |
|
<td>Collection of StarCoderBase-3B (3B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td> |
|
</tr> |
|
<tr> |
|
<th></t> |
|
<td><a href=https://huggingface.co/collections/starpeft/starcoderbase-7b-650c1f028b45cfec8e72c265>Astraios-7B</a></td> |
|
<td>Collection of StarCoderBase-7B (7B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td> |
|
</tr> |
|
<tr> |
|
<th></t> |
|
<td><a href=https://huggingface.co/collections/bigcode/astraios-16b-65788b7476b6de79781054cc>Astraios-16B</a></td> |
|
<td>Collection of StarCoderBase-16B (16B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td> |
|
</tr> |
|
<tr> |
|
<th>Evaluation</t> |
|
<td><a href=https://huggingface.co/datasets/code_x_glue_cc_clone_detection_big_clone_bench>BigCloneBench</a></td> |
|
<td>Dataset for clone detection; We use 2,000 samples for evaluation</td> |
|
</tr> |
|
<tr> |
|
<th></t> |
|
<td><a href=https://huggingface.co/datasets/code_x_glue_cc_defect_detection>Devign</a></td> |
|
<td>Dataset for defect detection; We use 2,000 samples for evaluation</td> |
|
</tr> |
|
<tr> |
|
<th></t> |
|
<td><a href=https://huggingface.co/datasets/bigcode/humanevalpack>HumanEvalPack</a></td> |
|
<td>Extension of OpenAI's HumanEval to cover 3 scenarios across 6 languages</td> |
|
</tr> |
|
<tr> |
|
<th></t> |
|
<td><a href=https://huggingface.co/datasets/RaymondLi/perturbed_humaneval>ReCode</a></td> |
|
<td>Dataset for the robustness of code generation, covering 4 variants</td> |
|
</tr> |
|
<tr> |
|
<th></t> |
|
<td><a href=https://huggingface.co/datasets/moyix/asleep_keyboard>Asleep At The Keyboard</a></td> |
|
<td>Datasets for security of code generation; We use DoW for evaluation</td> |
|
</tr> |
|
</table> |
|
|
|
|
|
# Use |
|
|
|
## Intended use |
|
|
|
The model follows instructions provided in the input. You should always preface your input with "Question: " and finish it with "Answer:", for example: "Question: Please write a function in Python that performs bubble sort. |
|
|
|
Answer:" |
|
|
|
**Feel free to share your generations in the Community tab!** |
|
|
|
## Generation |
|
```python |
|
# pip install -q transformers |
|
# pip install -e git+https://github.com/bigcode-project/astraios#subdirectory=peft |
|
from peft import PeftModel |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
peft_checkpoint = "bigcode/astraios-1b-ia3" |
|
checkpoint = "bigcode/starcoderbase-1b" |
|
model = AutoModelForCausalLM.from_pretrained(checkpoint) |
|
model = PeftModel.from_pretrained(model, peft_checkpoint) |
|
device = "cuda" # for GPU usage or "cpu" for CPU usage |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) |
|
|
|
inputs = tokenizer.encode("Question: Please write a function in Python that performs bubble sort. |
|
|
|
Answer:", return_tensors="pt").to(device) |
|
outputs = model.generate(inputs) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
# Training |
|
|
|
## Model |
|
|
|
- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective |
|
- **Steps:** 250k pretraining & 200 instruction tuning |
|
- **Precision:** fp32 |
|
|
|
## Hardware |
|
|
|
- **Pretraining:** |
|
- **GPUs:** 512 Tesla A100 |
|
- **Training time:** 24 days |
|
- **Instruction tuning:** |
|
- **GPUs:** 8 Tesla A100 |
|
|
|
## Software |
|
|
|
- **Orchestration:** [Megatron-LM/Transformers](https://github.com/bigcode-project/octopack#training) |
|
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) |
|
|
|
# Citation |
|
|
|
```bibtex |
|
``` |
|
|