whis-tam-small / README.md
Bhuvanesh
updated readme
c6899d9
metadata
language:
  - ta
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper Small Tamil
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: ta_in
          split: test
        metrics:
          - type: wer
            value: 15.8
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: ta
          split: test
        metrics:
          - type: wer
            value: 11.15
            name: WER

Whisper Small Ta - Bharat Ramanathan (Kudos to him for developing it)

This is a copy of his model for academic purpose.

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1803
  • Wer: 17.1456

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3374 0.1 500 0.2579 23.3804
0.29 0.2 1000 0.2260 20.9937
0.2522 0.3 1500 0.2139 20.0682
0.2338 0.4 2000 0.2025 19.6785
0.223 0.5 2500 0.1979 18.3147
0.211 0.6 3000 0.1927 17.8276
0.2032 0.7 3500 0.1865 17.3892
0.1978 0.8 4000 0.1839 17.5353
0.1972 0.9 4500 0.1812 17.0969
0.1894 1.0 5000 0.1803 17.1456

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2