librarian-bot's picture
Librarian Bot: Add base_model information to model
dcddfd1
|
raw
history blame
2.16 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - billsum
metrics:
  - rouge
base_model: facebook/bart-large-cnn
model-index:
  - name: bart-large-cnn-small-billsum-5epochs
    results:
      - task:
          type: text2text-generation
          name: Sequence-to-sequence Language Modeling
        dataset:
          name: billsum
          type: billsum
          config: default
          split: train[:1%]
          args: default
        metrics:
          - type: rouge
            value: 0.5406
            name: Rouge1

bart-large-cnn-small-billsum-5epochs

This model is a fine-tuned version of facebook/bart-large-cnn on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7206
  • Rouge1: 0.5406
  • Rouge2: 0.312
  • Rougel: 0.3945
  • Rougelsum: 0.4566

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.373e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 16
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.3723 1.33 16 1.8534 0.5204 0.299 0.3893 0.4441
1.6579 2.67 32 1.7208 0.5427 0.3143 0.3915 0.459
1.2397 4.0 48 1.7206 0.5406 0.312 0.3945 0.4566

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2