bhenrym14 commited on
Commit
779e1de
1 Parent(s): 0346c28

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -1
README.md CHANGED
@@ -5,6 +5,8 @@ datasets:
5
 
6
  Mostly untested!
7
 
 
 
8
  # RoPE Scaled QLoRA Fine-tune of Llama-33b on airoboros-gpt4-1.4.1 (fp16)
9
 
10
  ## Overview
@@ -20,7 +22,9 @@ Pretraining took 10 hours. Finetuning took ~41 hours on 1x RTX 6000 Ada.
20
 
21
  ## How to Use
22
 
23
- REQUIRED: you'll need to patch in the appropriate RoPE scaling module. see: [replace_llama_rope_with_scaled_rope](https://github.com/bhenrym14/qlora-airoboros-longcontext/blob/main/scaledllama/llama_rope_scaled_monkey_patch-16k.py). You will need to call `replace_llama_rope_with_scaled_rope` in ooba somewhere. Calling this at the top of the training module after the imports works for me.
 
 
24
 
25
  ## Motivation
26
  Recent advancements in extending context by RoPE scaling ([kaiokendev](https://kaiokendev.github.io/til#extending-context-to-8k) and [meta AI)](https://arxiv.org/abs/2306.15595)) demonstrate the ability to extend the context window without (total) retraining. My prior experiments have found the following:
 
5
 
6
  Mostly untested!
7
 
8
+ Find GPTQ quantized weights here: https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-GPTQ
9
+
10
  # RoPE Scaled QLoRA Fine-tune of Llama-33b on airoboros-gpt4-1.4.1 (fp16)
11
 
12
  ## Overview
 
22
 
23
  ## How to Use
24
 
25
+ The easiest way is to use the GPTQ weights (linked above) with [oobabooga text-generation-webui](https://github.com/oobabooga/text-generation-webui) and ExLlama. You'll need to set max_seq_len to 8192 and compress_pos_emb to 4. Otherwise use the transformers module.
26
+
27
+ **IMPORTANT: To use these weights you'll need to patch in the appropriate RoPE scaling module. see: [replace_llama_rope_with_scaled_rope](https://github.com/bhenrym14/qlora-airoboros-longcontext/blob/main/scaledllama/llama_rope_scaled_monkey_patch-16k.py)**
28
 
29
  ## Motivation
30
  Recent advancements in extending context by RoPE scaling ([kaiokendev](https://kaiokendev.github.io/til#extending-context-to-8k) and [meta AI)](https://arxiv.org/abs/2306.15595)) demonstrate the ability to extend the context window without (total) retraining. My prior experiments have found the following: