bhaskartripathi commited on
Commit
63bcb95
1 Parent(s): 622c667

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -56
README.md CHANGED
@@ -31,7 +31,7 @@ The primary objective of this model is to **serve the unique needs of Indian sto
31
 
32
  <p align="center">
33
  <img src="https://huggingface.co/bhaskartripathi/GPT_Neo_Market_Analysis/resolve/main/indicBull.JPG" alt="IndicFinGPT Logo" width="400" height="300">
34
- <strong>भारत का पहला AI मॉडल: शीर्ष 100 कंपनियों पर केंद्रित</strong>
35
  </p>
36
 
37
 
@@ -43,21 +43,64 @@ The training data also incorporates **local influences** such as cultural factor
43
 
44
  ## Key Highlights
45
 
46
- IndicFinGPT
47
- India's first Large Language Model fine-tuned for financial market analysis, built on GPT-Neo 125M architecture.
48
- Key Highlights
49
- IndicFinGPT is the first LLM tailored for Indian financial markets, providing in-depth insights into:
 
50
 
51
- Trading Patterns: Specialized in recognizing BSE/NSE-specific patterns and cycles
52
- Market Sentiment: Built-in understanding of Indian market sentiment and cultural influences
53
- Economic Indicators: Adapted to domestic economic and financial metrics
54
- Local Influences: Awareness of timing, festival impacts, and market-specific volatility
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
 
 
 
 
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
  ## Core Capabilities
59
 
60
  #### Automated Q&A based Technical Analysis for chartless Trading:
 
61
 
62
  - **Head and Shoulders patterns**
63
  - What are the implications of a Head and Shoulders pattern forming for Tata Consultancy Services (TCS) in the upcoming week?
@@ -197,53 +240,6 @@ Culturally aware strategies include:
197
  - **Festival & Cultural Factors**: Insights into events like Diwali (Muhurat Trading), budget announcements, and investor sentiment.
198
  - **FII/DII Flow and Retail Behavior**: Specific guidance considering both institutional and retail dynamics.
199
 
200
- ## Implementation
201
-
202
- ### Quick Start
203
- ```python
204
- from transformers import AutoTokenizer, AutoModelForCausalLM
205
-
206
- model = AutoModelForCausalLM.from_pretrained("bhaskartripathi/GPT_Neo_Market_Analysis")
207
- tokenizer = AutoTokenizer.from_pretrained("bhaskartripathi/GPT_Neo_Market_Analysis")
208
-
209
- input_text = '''[INST] Given the following stock market data and technical analysis:
210
- Stock: EXAMPLE
211
- Date: 2024-01-01
212
- Technical Analysis:
213
- Current Price: ₹100
214
- Daily Range: ₹98 - ₹102
215
- Trading Volume: 1,000,000
216
- RSI: 55
217
- MACD: Bullish
218
- Based on this technical analysis, what is the likely price movement for tomorrow and why? [/INST]'''
219
-
220
- inputs = tokenizer(input_text, return_tensors="pt")
221
- outputs = model.generate(**inputs, max_new_tokens=50)
222
- result = tokenizer.decode(outputs[0], skip_special_tokens=True)
223
- ```
224
-
225
- ## Training Details
226
-
227
- ### Dataset and Fine-tuning
228
- - **Dataset**: Comprehensive dataset featuring 6 years of Indian market data.
229
- - **Method**: Fine-tuned using QLoRA (4-bit quantization) for optimal efficiency.
230
- - **Training Infrastructure**: Utilized an Nvidia T4 GPU, trained for ~6 hours with PEFT framework version 0.13.2.
231
-
232
- ## Performance Metrics
233
- - **Pattern Recognition**: High accuracy in classical and advanced pattern detection in Indian markets.
234
- - **Sentiment Correlation**: Strong alignment with local market movements.
235
- - **Risk & Volatility Handling**: Reliable risk analysis in volatile market conditions.
236
-
237
- ## Use Cases
238
-
239
- - **Automated Market Analysis**: Insight generation for Indian stock portfolios.
240
- - **Strategy Development**: Recommendations for traders in local markets.
241
- - **Risk Management**: Portfolio analysis and risk mitigation insights.
242
- - **Educational Utility**: Training tool for new traders learning about Indian markets.
243
-
244
- ## Social Impact
245
-
246
- IndicFinGPT democratizes sophisticated AI-based financial analysis for the Indian stock market, providing affordable and accessible tools for both seasoned investors and new traders.
247
 
248
  ## Citation
249
  ```bibtex
 
31
 
32
  <p align="center">
33
  <img src="https://huggingface.co/bhaskartripathi/GPT_Neo_Market_Analysis/resolve/main/indicBull.JPG" alt="IndicFinGPT Logo" width="400" height="300">
34
+ <strong>भारत बाजार की शीर्ष 100 कंपनियों का वित्तीय विश्लेषण करने वाला पहला Small Language Model</strong>
35
  </p>
36
 
37
 
 
43
 
44
  ## Key Highlights
45
 
46
+ 1. Trading Patterns: Specialized in recognizing BSE/NSE-specific patterns and cycles
47
+ 2. Market Sentiment: Built-in understanding of Indian market sentiment and cultural influences
48
+ 3. Macro-Economic Indicators: Adapted to domestic economic and financial metrics
49
+ 4. Indian Economic Influences: Awareness of timing, festival impacts, and market-specific volatility
50
+ 5. 10+ Technical Indicators
51
 
52
+ ## Implementation
53
+
54
+ ### Quick Start
55
+ ```python
56
+ from transformers import AutoTokenizer, AutoModelForCausalLM
57
+
58
+ model = AutoModelForCausalLM.from_pretrained("bhaskartripathi/GPT_Neo_Market_Analysis")
59
+ tokenizer = AutoTokenizer.from_pretrained("bhaskartripathi/GPT_Neo_Market_Analysis")
60
+
61
+ input_text = '''[INST] Given the following stock market data and technical analysis:
62
+ Stock: EXAMPLE
63
+ Date: 2024-01-01
64
+ Technical Analysis:
65
+ Current Price: ₹100
66
+ Daily Range: ₹98 - ₹102
67
+ Trading Volume: 1,000,000
68
+ RSI: 55
69
+ MACD: Bullish
70
+ Based on this technical analysis, what is the likely price movement for tomorrow and why? [/INST]'''
71
+
72
+ inputs = tokenizer(input_text, return_tensors="pt")
73
+ outputs = model.generate(**inputs, max_new_tokens=50)
74
+ result = tokenizer.decode(outputs[0], skip_special_tokens=True)
75
+ ```
76
+
77
+ ## Training Details
78
 
79
+ ### Dataset and Fine-tuning
80
+ - **Dataset**: Comprehensive dataset featuring 6 years of Indian market data.
81
+ - **Method**: Fine-tuned using QLoRA (4-bit quantization) for optimal efficiency.
82
+ - **Training Infrastructure**: Utilized an Nvidia T4 GPU, trained for ~6 hours with PEFT framework version 0.13.2.
83
 
84
+ ## Performance Metrics
85
+ - **Pattern Recognition**: High accuracy in classical and advanced pattern detection in Indian markets.
86
+ - **Sentiment Correlation**: Strong alignment with local market movements.
87
+ - **Risk & Volatility Handling**: Reliable risk analysis in volatile market conditions.
88
+
89
+ ## Use Cases
90
+
91
+ - **Automated Market Analysis**: Insight generation for Indian stock portfolios.
92
+ - **Strategy Development**: Recommendations for traders in local markets.
93
+ - **Risk Management**: Portfolio analysis and risk mitigation insights.
94
+ - **Educational Utility**: Training tool for new traders learning about Indian markets.
95
+
96
+ ## Social Impact
97
+
98
+ IndicFinGPT democratizes sophisticated AI-based financial analysis for the Indian stock market, providing affordable and accessible tools for both seasoned investors and new traders.
99
 
100
  ## Core Capabilities
101
 
102
  #### Automated Q&A based Technical Analysis for chartless Trading:
103
+ Investors, Traders, Economists, Econometricians and Researchers can ask any types of questions related to the below areas:
104
 
105
  - **Head and Shoulders patterns**
106
  - What are the implications of a Head and Shoulders pattern forming for Tata Consultancy Services (TCS) in the upcoming week?
 
240
  - **Festival & Cultural Factors**: Insights into events like Diwali (Muhurat Trading), budget announcements, and investor sentiment.
241
  - **FII/DII Flow and Retail Behavior**: Specific guidance considering both institutional and retail dynamics.
242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243
 
244
  ## Citation
245
  ```bibtex