metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: sentence-transformers/paraphrase-mpnet-base-v2
datasets:
- go_emotions
metrics:
- accuracy
widget:
- text: Curious as to why he's been passed up so many times now.
- text: I think you mean the announcement
- text: >-
try to attract the guy that i like. other than that i love gaming drawing
writing and watching tv.
- text: >-
I thought that phrase was only used for memes now lol at least that's what
I got from Vic deals
- text: 'Fantastic read, thanks for the insights! '
pipeline_tag: text-classification
inference: false
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model trained on the go_emotions dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
- Training Dataset: go_emotions
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("bhaskars113/go-emotions-multilabel")
# Run inference
preds = model("I think you mean the announcement")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 13.6060 | 30 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.3873 | - |
0.0223 | 50 | 0.2243 | - |
0.0446 | 100 | 0.2305 | - |
0.0670 | 150 | 0.2297 | - |
0.0893 | 200 | 0.2758 | - |
0.1116 | 250 | 0.2197 | - |
0.1339 | 300 | 0.1984 | - |
0.1562 | 350 | 0.1729 | - |
0.1786 | 400 | 0.1244 | - |
0.2009 | 450 | 0.164 | - |
0.2232 | 500 | 0.1587 | - |
0.2455 | 550 | 0.2272 | - |
0.2679 | 600 | 0.3367 | - |
0.2902 | 650 | 0.1715 | - |
0.3125 | 700 | 0.2213 | - |
0.3348 | 750 | 0.2394 | - |
0.3571 | 800 | 0.1275 | - |
0.3795 | 850 | 0.1919 | - |
0.4018 | 900 | 0.143 | - |
0.4241 | 950 | 0.2431 | - |
0.4464 | 1000 | 0.1747 | - |
0.4688 | 1050 | 0.1567 | - |
0.4911 | 1100 | 0.194 | - |
0.5134 | 1150 | 0.1895 | - |
0.5357 | 1200 | 0.1601 | - |
0.5580 | 1250 | 0.1042 | - |
0.5804 | 1300 | 0.0553 | - |
0.6027 | 1350 | 0.1614 | - |
0.625 | 1400 | 0.1854 | - |
0.6473 | 1450 | 0.1259 | - |
0.6696 | 1500 | 0.138 | - |
0.6920 | 1550 | 0.2181 | - |
0.7143 | 1600 | 0.1144 | - |
0.7366 | 1650 | 0.1987 | - |
0.7589 | 1700 | 0.0859 | - |
0.7812 | 1750 | 0.1665 | - |
0.8036 | 1800 | 0.1628 | - |
0.8259 | 1850 | 0.2296 | - |
0.8482 | 1900 | 0.1892 | - |
0.8705 | 1950 | 0.2033 | - |
0.8929 | 2000 | 0.1507 | - |
0.9152 | 2050 | 0.1592 | - |
0.9375 | 2100 | 0.1077 | - |
0.9598 | 2150 | 0.1415 | - |
0.9821 | 2200 | 0.1561 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.0
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}