bhadresh-savani's picture
update model card README.md
7455df9
|
raw
history blame
1.9 kB
---
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: bertweet-base-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.929
- name: F1
type: f1
value: 0.9295613935787139
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bertweet-base-finetuned-emotion
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1737
- Accuracy: 0.929
- F1: 0.9296
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.9469 | 1.0 | 250 | 0.3643 | 0.895 | 0.8921 |
| 0.2807 | 2.0 | 500 | 0.2173 | 0.9245 | 0.9252 |
| 0.1749 | 3.0 | 750 | 0.1859 | 0.926 | 0.9266 |
| 0.1355 | 4.0 | 1000 | 0.1737 | 0.929 | 0.9296 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3