metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- librispeech_asr
metrics:
- wer
model-index:
- name: whisper-small-libirClean-vs-commonNative-en
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: librispeech_asr
type: librispeech_asr
config: clean
split: train
args: clean
metrics:
- name: Wer
type: wer
value: 84.71153846153847
whisper-small-libirClean-vs-commonNative-en
This model is a fine-tuned version of openai/whisper-small on the librispeech_asr dataset. It achieves the following results on the evaluation set:
- Loss: 2.3887
- Wer: 84.7115
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.2459 | 0.26 | 10 | 3.6972 | 20.6731 |
0.83 | 0.53 | 20 | 2.9120 | 33.1731 |
0.5312 | 0.79 | 30 | 2.4692 | 76.6346 |
0.445 | 1.05 | 40 | 2.3355 | 65.8654 |
0.3173 | 1.32 | 50 | 2.3887 | 84.7115 |
Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2