bgstud's picture
update model card README.md
4f95397
|
raw
history blame
2.03 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - librispeech_asr
metrics:
  - wer
model-index:
  - name: whisper-small-libirClean-vs-commonNative-en
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: librispeech_asr
          type: librispeech_asr
          config: clean
          split: train
          args: clean
        metrics:
          - name: Wer
            type: wer
            value: 84.71153846153847

whisper-small-libirClean-vs-commonNative-en

This model is a fine-tuned version of openai/whisper-small on the librispeech_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3887
  • Wer: 84.7115

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.2459 0.26 10 3.6972 20.6731
0.83 0.53 20 2.9120 33.1731
0.5312 0.79 30 2.4692 76.6346
0.445 1.05 40 2.3355 65.8654
0.3173 1.32 50 2.3887 84.7115

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2