bfuzzy1 commited on
Commit
f6b5f9a
·
verified ·
1 Parent(s): 15a592a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -10
README.md CHANGED
@@ -14,34 +14,35 @@ datasets:
14
  - eth-dl-rewards/math-problems-for-sft
15
  ---
16
 
17
- # Model Trained Using AutoTrain
18
-
19
- This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
20
 
21
  # Usage
22
 
23
  ```python
24
 
25
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
26
 
27
- model_path = "PATH_TO_THIS_REPO"
28
 
29
  tokenizer = AutoTokenizer.from_pretrained(model_path)
30
  model = AutoModelForCausalLM.from_pretrained(
31
  model_path,
32
  device_map="auto",
33
- torch_dtype='auto'
34
- ).eval()
 
35
 
36
- # Prompt content: "hi"
37
  messages = [
38
- {"role": "user", "content": "hi"}
39
  ]
40
 
41
  input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
42
- output_ids = model.generate(input_ids.to('cuda'))
 
 
 
43
  response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
44
 
45
- # Model response: "Hello! How can I assist you today?"
46
  print(response)
47
  ```
 
14
  - eth-dl-rewards/math-problems-for-sft
15
  ---
16
 
17
+ # The M is for Math.
 
 
18
 
19
  # Usage
20
 
21
  ```python
22
 
23
  from transformers import AutoModelForCausalLM, AutoTokenizer
24
+ import torch
25
 
26
+ model_path = "bfuzzy1/acheron-m"
27
 
28
  tokenizer = AutoTokenizer.from_pretrained(model_path)
29
  model = AutoModelForCausalLM.from_pretrained(
30
  model_path,
31
  device_map="auto",
32
+ torch_dtype='auto',
33
+ trust_remote_code=True
34
+ )
35
 
 
36
  messages = [
37
+ {"role": "user", "content": "What's 2 + 2 -3?"}
38
  ]
39
 
40
  input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
41
+ output_ids = model.generate(
42
+ input_ids.to('mps' if torch.backends.mps.is_available() else 'cpu'),
43
+ max_new_tokens=100
44
+ )
45
  response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
46
 
 
47
  print(response)
48
  ```