metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- ag_news
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-news-trained
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: ag_news
type: ag_news
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9194736842105263
- name: F1
type: f1
value: 0.9195099897221968
distilbert-base-uncased-news-trained
This model is a fine-tuned version of distilbert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:
- Loss: 0.2420
- Accuracy: 0.9195
- F1: 0.9195
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.346 | 1.0 | 469 | 0.2511 | 0.9142 | 0.9142 |
0.1874 | 2.0 | 938 | 0.2420 | 0.9195 | 0.9195 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3