felixbxl commited on
Commit
1c62f5d
·
verified ·
1 Parent(s): e16b501

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -188
README.md CHANGED
@@ -6,194 +6,86 @@ tags:
6
  - image-categorisation
7
  - data-categoriasation
8
  pipeline_tag: image-classification
 
 
 
9
  ---
10
  # Model Card for Model ID
11
- This model is designed for efficient image classification. Simply upload a picture, and the model will automatically categorize it into one of the predefined groups. It is suitable for a wide range of applications, including object recognition, scene analysis, and more. The model leverages advanced deep learning techniques to ensure high accuracy and fast processing. Perfect for both developers and researchers looking to streamline their image classification tasks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
-
14
- ### Model Description
15
-
16
- <!-- . -->
17
-
18
-
19
-
20
- - **Developed by:** [BXL Digital]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
6
  - image-categorisation
7
  - data-categoriasation
8
  pipeline_tag: image-classification
9
+ language:
10
+ - de
11
+ - en
12
  ---
13
  # Model Card for Model ID
14
+ This model is a Jewelry Classifier. Just upload an image of one of the categories named below and the model will classify it for you.
15
+ - Pendant
16
+ - Bracelet
17
+ - Chain
18
+ - Earring
19
+ - Ring
20
+ - Watch
21
+
22
+ # How to use?
23
+ Before following the steps below, please install these dependencies:
24
+
25
+ ```pyhton
26
+ numpy==1.26.4
27
+ keras==3.3.3
28
+ pillow==10.3.0
29
+ ```
30
+ ### Step1: Load the Model (jewelry_classification.h5)
31
+ Download the model file from (link) and then use the below code snippet to load the model.
32
+
33
+
34
+ ```python
35
+ model = load_model('jewelry_classification_model.h5')
36
+
37
+ class_labels = ['Anhänger', 'Armbänder', 'Ketten', 'Ohrringe', 'Ringe', 'Uhren']
38
+ ```
39
+
40
+ ### Step 2: Preprocess your images
41
+ Before giving images to the model, that image needs to be preprocessed to get a numpy array. You can just use the below function.
42
+
43
+ ```python
44
+ def preprocess_image(img):
45
+ try:
46
+ img = Image.open(img)
47
+ img = img.resize((224, 224))
48
+ img_array = img_to_array(img)
49
+ img_array = np.expand_dims(img_array, axis=0)
50
+ img_array = img_array.astype(np.float32) / 255.0
51
+ return img_array
52
+ except Exception as error:
53
+ st.error(f"An error occurred during image preprocessing: {error}")
54
+ return None
55
+ ```
56
+
57
+ ### Step 3: Predict the output
58
+ In this step the preprocessed image could be given to the model to get the classification. Below is the sample code snippet.
59
+
60
+ ```python
61
+ def choose_category(img, is_url=True):
62
+ try:
63
+ processed_img = preprocess_image(img, is_url)
64
+ if processed_img is not None:
65
+ preds = model.predict(processed_img)
66
+ category = class_labels[np.argmax(preds)]
67
+ confidence = np.max(preds)
68
+
69
+ return category, confidence*100
70
+ return 'Other', 0
71
+ except Exception as e:
72
+ st.error(f"An error occurred during prediction: {e}")
73
+ return 'Other', 0
74
+ ```
75
+ ### Step 4(optional): Streamlit UI
76
+ Use the below snippet to make an UI Application using the model
77
+
78
+ ```python
79
+ # UI interface
80
+ import streamlit as st
81
+ st.title("Jewelry Classification")
82
+
83
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg"])
84
+ if st.button("Classify"):
85
+ if uploaded_file is not None:
86
+ category, confidence = choose_category(uploaded_file, is_url=False)
87
+ st.write(f"Predicted Category: **{category}** with confidence **{confidence:.2f}%**")
88
+ else:
89
+ st.error("Please upload an image file.")
90
+ ```
91