Upload 2 files
Browse files- inference.py +121 -0
- requirements.txt +9 -0
inference.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from unsloth import FastLanguageModel
|
| 3 |
+
from transformers import TextStreamer # if needed elsewhere
|
| 4 |
+
|
| 5 |
+
# Set parameters
|
| 6 |
+
max_seq_length = 4096
|
| 7 |
+
dtype = None
|
| 8 |
+
load_in_4bit = False
|
| 9 |
+
|
| 10 |
+
# Load model and tokenizer once at startup
|
| 11 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 12 |
+
model_name="betterdataai/large-tabular-model",
|
| 13 |
+
max_seq_length=max_seq_length,
|
| 14 |
+
dtype=dtype,
|
| 15 |
+
load_in_4bit=load_in_4bit,
|
| 16 |
+
)
|
| 17 |
+
FastLanguageModel.for_inference(model)
|
| 18 |
+
|
| 19 |
+
def prompt_transformation(prompt):
|
| 20 |
+
initial_prompt = """
|
| 21 |
+
We have the following natural language query:
|
| 22 |
+
"{}"
|
| 23 |
+
|
| 24 |
+
Transform the above natural language query into a formalized prompt format. The format should include:
|
| 25 |
+
|
| 26 |
+
1. A sentence summarizing the objective.
|
| 27 |
+
2. A description of the columns, including their data types and examples.
|
| 28 |
+
3. Four example rows of the dataset in CSV format.
|
| 29 |
+
|
| 30 |
+
An example of this format is as follows, please only focus on the format, not the content:
|
| 31 |
+
|
| 32 |
+
"You are tasked with generating a synthetic dataset based on the following description. The dataset represents employee information. The dataset should include the following columns:
|
| 33 |
+
|
| 34 |
+
- NAME (String): Employee's full name, consisting of a first and last name (e.g., "John Doe", "Maria Lee", "Wei Zhang").
|
| 35 |
+
- GENDER (String): Employee's gender (e.g., "Male", "Female").
|
| 36 |
+
- EMAIL (String): Employee's email address, following the standard format.
|
| 37 |
+
- CITY (String): City where the employee resides (e.g., "New York", "London", "Beijing").
|
| 38 |
+
- COUNTRY (String): Country where the employee resides (e.g., "USA", "UK", "China").
|
| 39 |
+
- SALARY (Float): Employee's annual salary, a value between 30000 and 150000 (e.g., 55000.0, 75000.0).
|
| 40 |
+
|
| 41 |
+
Here are some examples:
|
| 42 |
+
NAME,GENDER,EMAIL,CITY,COUNTRY,SALARY
|
| 43 |
+
John Doe,Male,john.doe@example.com,New York,USA,56000.0
|
| 44 |
+
Maria Lee,Female,maria.lee@nus.edu.sg,London,UK,72000.0
|
| 45 |
+
Wei Zhang,Male,wei.zhang@meta.com,Beijing,China,65000.0
|
| 46 |
+
Sara Smith,Female,sara.smith@orange.fr,Paris,France,85000.0"
|
| 47 |
+
|
| 48 |
+
Here is the transformed query from the given natural language query:
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
messages = [
|
| 52 |
+
{"role": "system", "content": initial_prompt.format(prompt)},
|
| 53 |
+
{"role": "user", "content": "transform the given natural language text to the designated format"}
|
| 54 |
+
]
|
| 55 |
+
|
| 56 |
+
inputs = tokenizer.apply_chat_template(
|
| 57 |
+
messages,
|
| 58 |
+
tokenize=True,
|
| 59 |
+
add_generation_prompt=True, # Required for generation
|
| 60 |
+
return_tensors="pt",
|
| 61 |
+
).to("cuda")
|
| 62 |
+
|
| 63 |
+
output_ids = model.generate(
|
| 64 |
+
input_ids=inputs,
|
| 65 |
+
max_new_tokens=4096,
|
| 66 |
+
use_cache=True,
|
| 67 |
+
temperature=1.5,
|
| 68 |
+
min_p=0.1
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
generated_ids = output_ids[0][inputs.shape[1]:]
|
| 72 |
+
return tokenizer.decode(generated_ids, skip_special_tokens=True)
|
| 73 |
+
|
| 74 |
+
def table_generation(prompt):
|
| 75 |
+
messages = [
|
| 76 |
+
{"role": "system", "content": prompt},
|
| 77 |
+
{"role": "user", "content": "create 20 data rows"}
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
inputs = tokenizer.apply_chat_template(
|
| 81 |
+
messages,
|
| 82 |
+
tokenize=True,
|
| 83 |
+
add_generation_prompt=True, # Required for generation
|
| 84 |
+
return_tensors="pt",
|
| 85 |
+
).to("cuda")
|
| 86 |
+
|
| 87 |
+
output_ids = model.generate(
|
| 88 |
+
input_ids=inputs,
|
| 89 |
+
max_new_tokens=4096,
|
| 90 |
+
use_cache=True,
|
| 91 |
+
temperature=1.5,
|
| 92 |
+
min_p=0.1
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
generated_ids = output_ids[0][inputs.shape[1]:]
|
| 96 |
+
return tokenizer.decode(generated_ids, skip_special_tokens=True)
|
| 97 |
+
|
| 98 |
+
def predict(input_data):
|
| 99 |
+
"""
|
| 100 |
+
Inference endpoint entry point.
|
| 101 |
+
|
| 102 |
+
Expects input_data as a JSON string or dict with a key "query" that contains the natural language query.
|
| 103 |
+
Returns a JSON string with the generated table.
|
| 104 |
+
"""
|
| 105 |
+
try:
|
| 106 |
+
if isinstance(input_data, str):
|
| 107 |
+
data = json.loads(input_data)
|
| 108 |
+
else:
|
| 109 |
+
data = input_data
|
| 110 |
+
user_query = data.get("query", "")
|
| 111 |
+
except Exception:
|
| 112 |
+
return json.dumps({
|
| 113 |
+
"error": "Invalid input format. Please provide a JSON payload with a 'query' field."
|
| 114 |
+
})
|
| 115 |
+
|
| 116 |
+
# Transform the user query into the desired prompt format
|
| 117 |
+
transformed_prompt = prompt_transformation(user_query)
|
| 118 |
+
# Generate the table using the transformed prompt
|
| 119 |
+
generated_table = table_generation(transformed_prompt)
|
| 120 |
+
|
| 121 |
+
return json.dumps({"result": generated_table})
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
unsloth
|
| 2 |
+
pandas
|
| 3 |
+
datasets
|
| 4 |
+
trl
|
| 5 |
+
scipy
|
| 6 |
+
transformers>=4.30.0
|
| 7 |
+
peft>=0.4.0
|
| 8 |
+
accelerate>=0.20.0
|
| 9 |
+
torch>=2.0
|