Initial commit
Browse files- .gitattributes +1 -0
- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +1 -1
- a2c-AntBulletEnv-v0/data +17 -17
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1941.08 +/- 121.35
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 129260
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec9aa642e069a853141cf3ebd637c47027f3800a40af94115f76fdf1fd5dccaa
|
3 |
size 129260
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -64,7 +64,7 @@
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
-
"start_time":
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
@@ -73,7 +73,7 @@
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -81,7 +81,7 @@
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
-
":serialized:": "
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
@@ -89,7 +89,7 @@
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
-
":serialized:": "
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9849c71940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9849c719d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9849c71a60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9849c71af0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9849c71b80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9849c71c10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9849c71ca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9849c71d30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9849c71dc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9849c71e50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9849c71ee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9849c71f70>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f9849c721e0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1676881703558491694,
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKWo5725tBK/pTQYP0s25j8QWQjArBf+PtX5pj1hy/C+SOg/Pz17Yb3yiZk9UarQvz6ier8y5yM/Cn+MvdX1tz+3t1K/4ZSTvuZcOj+zcnS+FM/5vp3PoL/GxmQ+THMtP2pEgr+F+hA/O8bbPmQVpr+hKqU+0oGUP0qjwb4t5vc/ijflvx+TUzwjAXe9hwS5vmFYrz7SU6Q+gmU3P5I13D4TraO/puyWPPQ1sL5N+L49prcGv3gUy7+Hekw+hkSuPxPHPr/t5pa/rguHvwBXXr9gi3s/hfoQPzvG2z5kFaa/Luu/Pojbpr7hoSA/MG0oP1TB8z/lgUE9gPd+P1PVcL8APS4/fqADv0wu9b0lsQBANrIyPzUzPb+RmdY9578dwKnmcz/X2Aq/eRtEP9znuT+qF4y9IEFYvy6UoT5WLhXAakSCv4X6ED87xts+W0xFP9nkkD5K1sg+hD7bPk6xBUC3Q6C/5aVtvvu5p777RfW+0ZZAP/xrw7zc9DS/E7pvwIQy7Lwg+Ec/G5uqPhWR5z86aPQ9zYSpPzxKNj35kUHAoyzbvo5p2b3M7kk/ON9fP2pEgr+F+hA/O8bbPmQVpr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADSboq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+EQMPQAAAADeTfS/AAAAADP8sL0AAAAAgTnhPwAAAABnvga+AAAAADfe/T8AAAAAJ06ovQAAAACjAtq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjGMgNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPeBvL0AAAAAcR3ZvwAAAACCOKo9AAAAAKOx5j8AAAAA5IMKPgAAAADpteE/AAAAAObr1b0AAAAAlrXnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+ioDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAJsWG9AAAAAImGAMAAAAAA5d67vQAAAAASqdo/AAAAAJ0p5j0AAAAAgx/qPwAAAACimwm+AAAAAAql+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABRCIc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKsCgPAAAAAAx3gDAAAAAANfPqT0AAAAAOX3lPwAAAACZ5Xc8AAAAACLH4T8AAAAADUTBvQAAAAD5zvi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJj+HOeJ53WMAWyUTegDjAF0lEdAq+KS3w1BMXV9lChoBkdAmczclsxfwGgHTegDaAhHQKvkV/sE7nx1fZQoaAZHQJgqtyBCladoB03oA2gIR0Cr6ApcophGdX2UKGgGR0CZD/912aDxaAdN6ANoCEdAq+rInBtUGXV9lChoBkdAlchnSOR1YGgHTegDaAhHQKvvVmmtQsR1fZQoaAZHQJshKAVfu1FoB03oA2gIR0Cr8RZgXuVpdX2UKGgGR0CR6TXJYDDCaAdN6ANoCEdAq/aG+XZ5A3V9lChoBkdAmClHGOuJUGgHTegDaAhHQKv6/5O8Cgd1fZQoaAZHQJLkcD2alUJoB03oA2gIR0CsAIS7Xg+AdX2UKGgGR0CV4DwK0D2baAdN6ANoCEdArAJANoakynV9lChoBkdAk4XgKOT7mGgHTegDaAhHQKwGCM2FWXF1fZQoaAZHQJppENlRP45oB03oA2gIR0CsCLgjyFwldX2UKGgGR0CYrvSvTw2EaAdN6ANoCEdArA1NlK9PDnV9lChoBkdAmuXLtE5QxmgHTegDaAhHQKwPMtcv/R51fZQoaAZHQJZh36WPcSJoB03oA2gIR0CsE9b79AHFdX2UKGgGR0CW+3MCtA9naAdN6ANoCEdArBg2M+/xlXV9lChoBkdAnC44NVinYWgHTegDaAhHQKwekM2FWXF1fZQoaAZHQItCwDHOryVoB01TAmgIR0CsHvcL8aXKdX2UKGgGR0CYvzQDmr80aAdN6ANoCEdArCBIwM6RyXV9lChoBkdAmgxjN2TxG2gHTegDaAhHQKwm9H/95yF1fZQoaAZHQJpC7PeHi3poB03oA2gIR0CsK2Gthd+odX2UKGgGR0CcQeXqqwQlaAdN6ANoCEdArCvLaIvalHV9lChoBkdAnB/L5IpYtGgHTegDaAhHQKwtJ3EAHVx1fZQoaAZHQJxIVcD8tPJoB03oA2gIR0CsNSCuloDgdX2UKGgGR0CXtbLYwqRVaAdN6ANoCEdArDxx5VwPy3V9lChoBkdAmIQbTYukDmgHTegDaAhHQKw9D3t8eCF1fZQoaAZHQJnVeois4kxoB03oA2gIR0CsPnFCLMs6dX2UKGgGR0CUhEsNDtw8aAdN6ANoCEdArEUtrqMWGnV9lChoBkdAlsmQqd6LO2gHTegDaAhHQKxJvCMPz4F1fZQoaAZHQJjrUXN1QqJoB03oA2gIR0CsSilHavicdX2UKGgGR0CRb9V4HHFQaAdN6ANoCEdArEujvTgEU3V9lChoBkdAlYBPra/RFGgHTegDaAhHQKxS89Net0V1fZQoaAZHQJgQ4jZ+QU5oB03oA2gIR0CsWgWzOX3QdX2UKGgGR0CZor8zyjHoaAdN6ANoCEdArFq1PYWcjXV9lChoBkdAmfZ7ZFocrGgHTegDaAhHQKxc4M6zVtp1fZQoaAZHQJvuyBlMAWBoB03oA2gIR0CsY1mICU5ddX2UKGgGR0CaJX2NedCmaAdN6ANoCEdArGfZx5s0pHV9lChoBkdAmjQkwztTk2gHTegDaAhHQKxoO8QqZtx1fZQoaAZHQJpbUBIWgvloB03oA2gIR0CsaZrU1AJLdX2UKGgGR0CYr8J3gUDdaAdN6ANoCEdArHAUMZxaPnV9lChoBkdAmctgb6xgRmgHTegDaAhHQKx2gzOX3QF1fZQoaAZHQJm/4MCtA9poB03oA2gIR0CsdzCgCfYjdX2UKGgGR0CZGZqXnhbXaAdN6ANoCEdArHloyM1jzHV9lChoBkdAmrZJ3C9AX2gHTegDaAhHQKyA8TTOPeZ1fZQoaAZHQJUsTFDOTq1oB03oA2gIR0CshU642CNCdX2UKGgGR0CZJTieumrKaAdN6ANoCEdArIW1sDW9UXV9lChoBkdAmWteIyj59GgHTegDaAhHQKyHB3C9AX51fZQoaAZHQJs9fV4HHFRoB03oA2gIR0CsjdiGFi8WdX2UKGgGR0CdcqY51eSkaAdN6ANoCEdArJM8R3/xUnV9lChoBkdAmzwdMGorF2gHTegDaAhHQKyT1Yh+vyN1fZQoaAZHQJzj3qmj0thoB03oA2gIR0CslfLqdH2AdX2UKGgGR0CYznrhzeXSaAdN6ANoCEdArJ7m3DvVmXV9lChoBkdAk2Lyfg75mGgHTegDaAhHQKyjiDW9US91fZQoaAZHQJFV7YRNATtoB03oA2gIR0Cso/J+MIeHdX2UKGgGR0Cb4yj4HoovaAdN6ANoCEdArKVDtZ3cHnV9lChoBkdAlVGOmNzbOGgHTegDaAhHQKyrxLlmvnt1fZQoaAZHQI9twsyzolloB03oA2gIR0CssExnOB1+dX2UKGgGR0CQZTlBQemvaAdN6ANoCEdArLD1pPAO8XV9lChoBkdAjPzvl+3H72gHTegDaAhHQKyzAf0VafV1fZQoaAZHQJBTXh99c8loB03oA2gIR0CsvQwmE5AAdX2UKGgGR0CRZVSjQAuJaAdN6ANoCEdArMGJMvh60XV9lChoBkdAkqDlS0jTrmgHTegDaAhHQKzB8RvFWGR1fZQoaAZHQJXe9vl2eQNoB03oA2gIR0Csw0u2iL2pdX2UKGgGR0CXQzRvm5lOaAdN6ANoCEdArMoInx8UmHV9lChoBkdAmjAwwoLG72gHTegDaAhHQKzOgfhddE91fZQoaAZHQJstmg+QlrxoB03oA2gIR0Cszusyi22HdX2UKGgGR0CbNOzK9wm3aAdN6ANoCEdArNCB7qptJnV9lChoBkdAlr5ZOFg2ImgHTegDaAhHQKzbB67/XGx1fZQoaAZHQJohrtfG+9JoB03oA2gIR0Cs3+e0gKWtdX2UKGgGR0CbJw2Q4jrzaAdN6ANoCEdArOBR0KZ2IXV9lChoBkdAmFFMunMt9WgHTegDaAhHQKzhrXLeQ+51fZQoaAZHQJkTewdKdx1oB03oA2gIR0Cs6EaY3Ns4dX2UKGgGR0Ca3nFAE+xGaAdN6ANoCEdArOy1ocrAg3V9lChoBkdAnXzP7rLQomgHTegDaAhHQKztHK15Sm91fZQoaAZHQJmcrssxwhpoB03oA2gIR0Cs7noqbz9TdX2UKGgGR0CfPvHryDqXaAdN6ANoCEdArPgmTzND+nV9lChoBkdAnM0LgXMyJ2gHTegDaAhHQKz925uqFRJ1fZQoaAZHQJ/mA9ovi99oB03oA2gIR0Cs/kAC4jKQdX2UKGgGR0Cd8q+85CF9aAdN6ANoCEdArP+fva11GXV9lChoBkdAnEAd3wCr92gHTegDaAhHQK0GPXFtKqZ1fZQoaAZHQJu8/24/eLxoB03oA2gIR0CtCu6XSjQBdX2UKGgGR0CT0V/336AOaAdN6ANoCEdArQta+HrQgXV9lChoBkdAl5RiIUJv52gHTegDaAhHQK0MuWUr08N1fZQoaAZHQJ+LE+KTB69oB03oA2gIR0CtFY+PikwfdX2UKGgGR0CflvlNUOuraAdN6ANoCEdArRwvvQWvbHV9lChoBkdAnIQg/cFhX2gHTegDaAhHQK0clH6uW8h1fZQoaAZHQJ9iZuLrHENoB03oA2gIR0CtHfASOBDpdX2UKGgGR0CfGC5ggHNYaAdN6ANoCEdArSR3DR+jM3V9lChoBkdAnin6jJuEVWgHTegDaAhHQK0o3f6XSjR1fZQoaAZHQJtAnbtZ3cJoB03oA2gIR0CtKUJRoAXEdX2UKGgGR0CaVVt9x6v8aAdN6ANoCEdArSqow9JSSHV9lChoBkdAkt+kTtb9qGgHTegDaAhHQK0yj/ACW/t1fZQoaAZHQJiWQBkqc3FoB03oA2gIR0CtOf3Td+G5dX2UKGgGR0CYQVnJ1aGIaAdN6ANoCEdArTqvd43WF3V9lChoBkdAmdc8uez2OGgHTegDaAhHQK08Np48lol1fZQoaAZHQJ3uz6yjYZloB03oA2gIR0CtQt9wm3OOdX2UKGgGR0CgJGZc9nscaAdN6ANoCEdArUeR7ojfN3V9lChoBkdAmtF15OafBmgHTegDaAhHQK1H++Pikwh1fZQoaAZHQJe9ASyt3fRoB03oA2gIR0CtSVmetjkNdX2UKGgGR0CeW5EHt4RmaAdN6ANoCEdArVAtVT72tnVlLg=="
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4ced16923c78c53c8950092acf179dfb6160ab985125072d0725d791ba20ff2
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56958
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eab18e2e9fb5b7f8a666f86df7c9527b7db1f8af0ea513c73b01404ed15b729b
|
3 |
size 56958
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b3544ce50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b3544cee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b3544cf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b35452040>", "_build": "<function ActorCriticPolicy._build at 0x7f4b354520d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4b35452160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b354521f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b35452280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4b35452310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b354523a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b35452430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b354524c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4b3544f330>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674067405657217413, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP3MQD/akYi+YwIHPy+BTz+ynMe/Vky7vwwAob9ypw6//CtCP9IyDL/MaYS/yT4XP7xtq78E3Cc/foHmPqEOmb+m8l+/06ZZP5DVBL/IWQNATCZnv0DgYD0bCKo+Mq64P3eHqb9iZ9M+pskBwAgZob8M6DM/PqWGvyE9mcA7mqK+cmVQv9n7Xj9UG5S/KKgmwGUhVD+DxyG8KxA4QFQugryxkby/M00YO5MxJz9zPhc/DS/dvlktZr+Xoi0/d1WEPoXLF0ADIHK9BHgyQEzvIb3MSUE/YmfTPk95/D4IGaG/52GEP9KSlL4kgAQ/07ItP1gSGsAKccq+CPCqv850er9+4jU/bfVFv0HoKj5ssR/ArMa8v+U1NTyrnJI+ItqoP4hwQL+06j2/QHsav3bJXb91Fma/ebx4PHdN4b3LXgRAzElBP2Jn0z5Pefw+CBmhv05oVD+1zuC/yoQowBZBgj5ucGo+g9hLP2CkTb6hs+C/vyVEP2zGQb0Qjus/FitUPuy/vL+7W4m71ueLvi4jk779rDS/55s4v0jkPj/6Qj08mhnxP+c/GD/LUzJA+/t3vMxJQT9iZ9M+T3n8PggZob+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEcqG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3bgRvgAAAAAzNu+/AAAAANwpzb0AAAAAuk3wPwAAAAAuKp29AAAAANon5D8AAAAA9ofLPAAAAACoIvG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdwMRtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgATtyD0AAAAAvFjbvwAAAAC3EA8+AAAAAL5p7T8AAAAAxOvuvQAAAADVl/E/AAAAAND7Or0AAAAAVPjxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOeV9TUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIACbhq9AAAAACzt578AAAAAldKHPQAAAAAKEOw/AAAAAEMD5z0AAAAAyLbZPwAAAACK0QI+AAAAAGGQ4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACM4zO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAGcBPgAAAAAeE/6/AAAAANcSGb0AAAAAziABQAAAAAAyGns9AAAAAGA4+z8AAAAAmRahPAAAAADoM/a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ2AbirDIimMAWyUTegDjAF0lEdAq0VlDtw71nV9lChoBkdAmjrq8tf5UWgHTegDaAhHQKtFd4/u9e11fZQoaAZHQJ1o/xG2CuloB03oA2gIR0CrSRIKMNtqdX2UKGgGR0CaPJ2vjfelaAdN6ANoCEdAq05NqUNayXV9lChoBkdAlgs5mh/RV2gHTegDaAhHQKtTNGtp22Z1fZQoaAZHQJo7tv1lGw1oB03oA2gIR0CrU0iZF5OadX2UKGgGR0CdvIvttyggaAdN6ANoCEdAq1bk6gdwN3V9lChoBkdAnszrxy4nW2gHTegDaAhHQKtcGdqcmSh1fZQoaAZHQJm/qYAsCkpoB03oA2gIR0CrYQKekHlfdX2UKGgGR0Cc1sm5UcXFaAdN6ANoCEdAq2EV7pmmL3V9lChoBkdAmTSvtY0VJ2gHTegDaAhHQKtku065oXd1fZQoaAZHQJgYdr0rbxpoB03oA2gIR0Crae4u9OARdX2UKGgGR0CbCyaYu01JaAdN6ANoCEdAq27dqesgdXV9lChoBkdAmsqrvXsgMmgHTegDaAhHQKtu8CA+Y+l1fZQoaAZHQJvz08TzundoB03oA2gIR0CrcpSflIVedX2UKGgGR0CaLC6Oo5xSaAdN6ANoCEdAq3erOcDr7nV9lChoBkdAmy2M3++/QGgHTegDaAhHQKt8h6Tnq3V1fZQoaAZHQJaG4vRJEploB03oA2gIR0CrfJqKgqVhdX2UKGgGR0CYm27UG3WnaAdN6ANoCEdAq4BAGB4D93V9lChoBkdAmpZFXV9WqGgHTegDaAhHQKuFZOsT37F1fZQoaAZHQJscmOT7l7toB03oA2gIR0CrilyFXaJzdX2UKGgGR0CZ617AtWdVaAdN6ANoCEdAq4pvViF0xXV9lChoBkdAm76q+vhZQ2gHTegDaAhHQKuOCphnanJ1fZQoaAZHQJtZkz+FUQ1oB03oA2gIR0Crk0kgfU4JdX2UKGgGR0CcZtwGnn+yaAdN6ANoCEdAq5g+KdhAnnV9lChoBkdAlUoF49ovjGgHTegDaAhHQKuYUXXyy2R1fZQoaAZHQJqFJ+so2GZoB03oA2gIR0Crm/LE9+w1dX2UKGgGR0CYmPF9a2WqaAdN6ANoCEdAq6EURe1KG3V9lChoBkdAmp5msijcmGgHTegDaAhHQKul+X+l0o11fZQoaAZHQJy/rvZyuIRoB03oA2gIR0CrpgvD50r9dX2UKGgGR0CYONe+mFajaAdN6ANoCEdAq6m61E3KjnV9lChoBkdAl5h6GgzxgGgHTegDaAhHQKuvE3mV7hN1fZQoaAZHQJWj0t6HCXRoB03oA2gIR0Crt+Ryn1nNdX2UKGgGR0CZZrkmQbMpaAdN6ANoCEdAq7gEIJJGv3V9lChoBkdAmvnLpV0cO2gHTegDaAhHQKu93s/pt791fZQoaAZHQJm77WqcVgxoB03oA2gIR0CrxHmdiDujdX2UKGgGR0CcP/2g3974aAdN6ANoCEdAq8ly0OVgQnV9lChoBkdAmgXJyIYWL2gHTegDaAhHQKvJhVH4Glh1fZQoaAZHQJXscfV7QcBoB03oA2gIR0CrzSUXYUWVdX2UKGgGR0CXIKPykKu0aAdN6ANoCEdAq9JPryDqW3V9lChoBkdAkBYSMglniGgHTegDaAhHQKvXUVW0Z3t1fZQoaAZHQJcYiDvmYBxoB03oA2gIR0Cr12RFqi48dX2UKGgGR0CYtCAEdNnHaAdN6ANoCEdAq9sIk/r0KHV9lChoBkdAlMkGGucME2gHTegDaAhHQKvgPUXHim51fZQoaAZHQJIpCrcTJyRoB03oA2gIR0Cr5S9Vea8ZdX2UKGgGR0CYFsVqveP8aAdN6ANoCEdAq+VCz9jwx3V9lChoBkdAmBmsNhE0BWgHTegDaAhHQKvo7crRSgp1fZQoaAZHQJr/AhLXcxloB03oA2gIR0Cr7iAGKQ7tdX2UKGgGR0CZpIN8E3bVaAdN6ANoCEdAq/MHQ+lj3HV9lChoBkdAmQEkeuFHrmgHTegDaAhHQKvzGshgVoJ1fZQoaAZHQJYQAxdpqRFoB03oA2gIR0Cr9tdZA6dUdX2UKGgGR0CY3fMFlkH2aAdN6ANoCEdAq/wV1fVqe3V9lChoBkdAmMifNNahYmgHTegDaAhHQKwBFSlWOp91fZQoaAZHQJsEKVX3g1poB03oA2gIR0CsASiNS619dX2UKGgGR0CYc6om5UcXaAdN6ANoCEdArATZVfeDWnV9lChoBkdAkG4dt65Xl2gHTegDaAhHQKwJ/jMmnfl1fZQoaAZHQJHJetnwob5oB03oA2gIR0CsDum65Gz9dX2UKGgGR0B68qpR4yGjaAdN6ANoCEdArA77viLl3nV9lChoBkdAl6ncBdUsF2gHTegDaAhHQKwSn4h2W6d1fZQoaAZHQJZ/2ZML4N9oB03oA2gIR0CsF9uNgjQidX2UKGgGR0CaIejS5RTCaAdN6ANoCEdArBy8K1G9YnV9lChoBkdAmHR6ZtvXLGgHTegDaAhHQKwczmseXAx1fZQoaAZHQJeQWcEvCdloB03oA2gIR0CsIG5Cv5gxdX2UKGgGR0CWt4W43FUAaAdN6ANoCEdArCWUqYqoZXV9lChoBkdAl0y3RTjvNWgHTegDaAhHQKwqlAE+xGF1fZQoaAZHQId9nnbItDloB03oA2gIR0CsKqcKPXCkdX2UKGgGR0CZYFeAd4mkaAdN6ANoCEdArC5UzGgi/3V9lChoBkdAhojeLvTgEWgHTegDaAhHQKwzne3QUpN1fZQoaAZHQJOXjC66J69oB03oA2gIR0CsOIaQeV9ndX2UKGgGR0CTTtCe2/i6aAdN6ANoCEdArDiZHy3CsXV9lChoBkdAkEG4FV1fV2gHTegDaAhHQKw8RldTo+x1fZQoaAZHQJMREovzvqloB03oA2gIR0CsQXn/1g6VdX2UKGgGR0CPAUUM5OrRaAdN6ANoCEdArEZxgVoHs3V9lChoBkdAh5ZjbBXS0GgHTegDaAhHQKxGhIjGDL91fZQoaAZHQHCByjQAuI1oB03oA2gIR0CsSjGeDnNgdX2UKGgGR0CByIwblzU7aAdN6ANoCEdArE9y1TisGXV9lChoBkdAih4fhddE9mgHTegDaAhHQKxUQt29tdl1fZQoaAZHQHXBhgVoHs1oB03oA2gIR0CsVFVF6RhddX2UKGgGR0CSdx5BTn7paAdN6ANoCEdArFfnoq0+knV9lChoBkdAkYh3e3x4IWgHTegDaAhHQKxdAbDMvAZ1fZQoaAZHQHz+bTUiILxoB03oA2gIR0CsYc/vOQhfdX2UKGgGR0CVr/jx0+1SaAdN6ANoCEdArGHjKifxt3V9lChoBkdAkH8umBOHnGgHTegDaAhHQKxleWC2+f11fZQoaAZHQJYuIg7o0Q9oB03oA2gIR0Csao19F4LUdX2UKGgGR0CCPvGvwEyMaAdN6ANoCEdArG9vGIbfg3V9lChoBkdAc4aSde6ZpmgHTegDaAhHQKxvgSdvsJJ1fZQoaAZHQHib99lVcUxoB03oA2gIR0Cscx6dUbT+dX2UKGgGR0CCJhdQfp2VaAdN6ANoCEdArHgvB3zMA3V9lChoBkdAe07QT238XWgHTegDaAhHQKx9EasIVud1fZQoaAZHQIOtAnF5v99oB03oA2gIR0CsfSWfkFOgdX2UKGgGR0CFcBkaMrEtaAdN6ANoCEdArICzImw7knV9lChoBkdAXAD0AcT8HmgHTegDaAhHQKyF3Sl3yI51fZQoaAZHQIEsbhm5DqpoB03oA2gIR0CsirgOrhitdX2UKGgGR0Bzva/7BO58aAdN6ANoCEdArIrJcmjTKHV9lChoBkdAfpASdvsJIGgHTegDaAhHQKyOXCIk7fZ1fZQoaAZHQINdhArxy4poB03oA2gIR0Csk3wfIS13dX2UKGgGR0B/AWrKeTV2aAdN6ANoCEdArJhMXpGFz3V9lChoBkdAfg1y2hIvrWgHTegDaAhHQKyYXztkWh11fZQoaAZHQI+PsFhXr+poB03oA2gIR0Csm/SpiqhldX2UKGgGR0CD0Kx3V09yaAdN6ANoCEdArKDtHFxXGXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9849c71940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9849c719d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9849c71a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9849c71af0>", "_build": "<function ActorCriticPolicy._build at 0x7f9849c71b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f9849c71c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9849c71ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9849c71d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9849c71dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9849c71e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9849c71ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9849c71f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9849c721e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676881703558491694, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKWo5725tBK/pTQYP0s25j8QWQjArBf+PtX5pj1hy/C+SOg/Pz17Yb3yiZk9UarQvz6ier8y5yM/Cn+MvdX1tz+3t1K/4ZSTvuZcOj+zcnS+FM/5vp3PoL/GxmQ+THMtP2pEgr+F+hA/O8bbPmQVpr+hKqU+0oGUP0qjwb4t5vc/ijflvx+TUzwjAXe9hwS5vmFYrz7SU6Q+gmU3P5I13D4TraO/puyWPPQ1sL5N+L49prcGv3gUy7+Hekw+hkSuPxPHPr/t5pa/rguHvwBXXr9gi3s/hfoQPzvG2z5kFaa/Luu/Pojbpr7hoSA/MG0oP1TB8z/lgUE9gPd+P1PVcL8APS4/fqADv0wu9b0lsQBANrIyPzUzPb+RmdY9578dwKnmcz/X2Aq/eRtEP9znuT+qF4y9IEFYvy6UoT5WLhXAakSCv4X6ED87xts+W0xFP9nkkD5K1sg+hD7bPk6xBUC3Q6C/5aVtvvu5p777RfW+0ZZAP/xrw7zc9DS/E7pvwIQy7Lwg+Ec/G5uqPhWR5z86aPQ9zYSpPzxKNj35kUHAoyzbvo5p2b3M7kk/ON9fP2pEgr+F+hA/O8bbPmQVpr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADSboq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+EQMPQAAAADeTfS/AAAAADP8sL0AAAAAgTnhPwAAAABnvga+AAAAADfe/T8AAAAAJ06ovQAAAACjAtq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjGMgNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPeBvL0AAAAAcR3ZvwAAAACCOKo9AAAAAKOx5j8AAAAA5IMKPgAAAADpteE/AAAAAObr1b0AAAAAlrXnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+ioDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAJsWG9AAAAAImGAMAAAAAA5d67vQAAAAASqdo/AAAAAJ0p5j0AAAAAgx/qPwAAAACimwm+AAAAAAql+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABRCIc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKsCgPAAAAAAx3gDAAAAAANfPqT0AAAAAOX3lPwAAAACZ5Xc8AAAAACLH4T8AAAAADUTBvQAAAAD5zvi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJj+HOeJ53WMAWyUTegDjAF0lEdAq+KS3w1BMXV9lChoBkdAmczclsxfwGgHTegDaAhHQKvkV/sE7nx1fZQoaAZHQJgqtyBCladoB03oA2gIR0Cr6ApcophGdX2UKGgGR0CZD/912aDxaAdN6ANoCEdAq+rInBtUGXV9lChoBkdAlchnSOR1YGgHTegDaAhHQKvvVmmtQsR1fZQoaAZHQJshKAVfu1FoB03oA2gIR0Cr8RZgXuVpdX2UKGgGR0CR6TXJYDDCaAdN6ANoCEdAq/aG+XZ5A3V9lChoBkdAmClHGOuJUGgHTegDaAhHQKv6/5O8Cgd1fZQoaAZHQJLkcD2alUJoB03oA2gIR0CsAIS7Xg+AdX2UKGgGR0CV4DwK0D2baAdN6ANoCEdArAJANoakynV9lChoBkdAk4XgKOT7mGgHTegDaAhHQKwGCM2FWXF1fZQoaAZHQJppENlRP45oB03oA2gIR0CsCLgjyFwldX2UKGgGR0CYrvSvTw2EaAdN6ANoCEdArA1NlK9PDnV9lChoBkdAmuXLtE5QxmgHTegDaAhHQKwPMtcv/R51fZQoaAZHQJZh36WPcSJoB03oA2gIR0CsE9b79AHFdX2UKGgGR0CW+3MCtA9naAdN6ANoCEdArBg2M+/xlXV9lChoBkdAnC44NVinYWgHTegDaAhHQKwekM2FWXF1fZQoaAZHQItCwDHOryVoB01TAmgIR0CsHvcL8aXKdX2UKGgGR0CYvzQDmr80aAdN6ANoCEdArCBIwM6RyXV9lChoBkdAmgxjN2TxG2gHTegDaAhHQKwm9H/95yF1fZQoaAZHQJpC7PeHi3poB03oA2gIR0CsK2Gthd+odX2UKGgGR0CcQeXqqwQlaAdN6ANoCEdArCvLaIvalHV9lChoBkdAnB/L5IpYtGgHTegDaAhHQKwtJ3EAHVx1fZQoaAZHQJxIVcD8tPJoB03oA2gIR0CsNSCuloDgdX2UKGgGR0CXtbLYwqRVaAdN6ANoCEdArDxx5VwPy3V9lChoBkdAmIQbTYukDmgHTegDaAhHQKw9D3t8eCF1fZQoaAZHQJnVeois4kxoB03oA2gIR0CsPnFCLMs6dX2UKGgGR0CUhEsNDtw8aAdN6ANoCEdArEUtrqMWGnV9lChoBkdAlsmQqd6LO2gHTegDaAhHQKxJvCMPz4F1fZQoaAZHQJjrUXN1QqJoB03oA2gIR0CsSilHavicdX2UKGgGR0CRb9V4HHFQaAdN6ANoCEdArEujvTgEU3V9lChoBkdAlYBPra/RFGgHTegDaAhHQKxS89Net0V1fZQoaAZHQJgQ4jZ+QU5oB03oA2gIR0CsWgWzOX3QdX2UKGgGR0CZor8zyjHoaAdN6ANoCEdArFq1PYWcjXV9lChoBkdAmfZ7ZFocrGgHTegDaAhHQKxc4M6zVtp1fZQoaAZHQJvuyBlMAWBoB03oA2gIR0CsY1mICU5ddX2UKGgGR0CaJX2NedCmaAdN6ANoCEdArGfZx5s0pHV9lChoBkdAmjQkwztTk2gHTegDaAhHQKxoO8QqZtx1fZQoaAZHQJpbUBIWgvloB03oA2gIR0CsaZrU1AJLdX2UKGgGR0CYr8J3gUDdaAdN6ANoCEdArHAUMZxaPnV9lChoBkdAmctgb6xgRmgHTegDaAhHQKx2gzOX3QF1fZQoaAZHQJm/4MCtA9poB03oA2gIR0CsdzCgCfYjdX2UKGgGR0CZGZqXnhbXaAdN6ANoCEdArHloyM1jzHV9lChoBkdAmrZJ3C9AX2gHTegDaAhHQKyA8TTOPeZ1fZQoaAZHQJUsTFDOTq1oB03oA2gIR0CshU642CNCdX2UKGgGR0CZJTieumrKaAdN6ANoCEdArIW1sDW9UXV9lChoBkdAmWteIyj59GgHTegDaAhHQKyHB3C9AX51fZQoaAZHQJs9fV4HHFRoB03oA2gIR0CsjdiGFi8WdX2UKGgGR0CdcqY51eSkaAdN6ANoCEdArJM8R3/xUnV9lChoBkdAmzwdMGorF2gHTegDaAhHQKyT1Yh+vyN1fZQoaAZHQJzj3qmj0thoB03oA2gIR0CslfLqdH2AdX2UKGgGR0CYznrhzeXSaAdN6ANoCEdArJ7m3DvVmXV9lChoBkdAk2Lyfg75mGgHTegDaAhHQKyjiDW9US91fZQoaAZHQJFV7YRNATtoB03oA2gIR0Cso/J+MIeHdX2UKGgGR0Cb4yj4HoovaAdN6ANoCEdArKVDtZ3cHnV9lChoBkdAlVGOmNzbOGgHTegDaAhHQKyrxLlmvnt1fZQoaAZHQI9twsyzolloB03oA2gIR0CssExnOB1+dX2UKGgGR0CQZTlBQemvaAdN6ANoCEdArLD1pPAO8XV9lChoBkdAjPzvl+3H72gHTegDaAhHQKyzAf0VafV1fZQoaAZHQJBTXh99c8loB03oA2gIR0CsvQwmE5AAdX2UKGgGR0CRZVSjQAuJaAdN6ANoCEdArMGJMvh60XV9lChoBkdAkqDlS0jTrmgHTegDaAhHQKzB8RvFWGR1fZQoaAZHQJXe9vl2eQNoB03oA2gIR0Csw0u2iL2pdX2UKGgGR0CXQzRvm5lOaAdN6ANoCEdArMoInx8UmHV9lChoBkdAmjAwwoLG72gHTegDaAhHQKzOgfhddE91fZQoaAZHQJstmg+QlrxoB03oA2gIR0Cszusyi22HdX2UKGgGR0CbNOzK9wm3aAdN6ANoCEdArNCB7qptJnV9lChoBkdAlr5ZOFg2ImgHTegDaAhHQKzbB67/XGx1fZQoaAZHQJohrtfG+9JoB03oA2gIR0Cs3+e0gKWtdX2UKGgGR0CbJw2Q4jrzaAdN6ANoCEdArOBR0KZ2IXV9lChoBkdAmFFMunMt9WgHTegDaAhHQKzhrXLeQ+51fZQoaAZHQJkTewdKdx1oB03oA2gIR0Cs6EaY3Ns4dX2UKGgGR0Ca3nFAE+xGaAdN6ANoCEdArOy1ocrAg3V9lChoBkdAnXzP7rLQomgHTegDaAhHQKztHK15Sm91fZQoaAZHQJmcrssxwhpoB03oA2gIR0Cs7noqbz9TdX2UKGgGR0CfPvHryDqXaAdN6ANoCEdArPgmTzND+nV9lChoBkdAnM0LgXMyJ2gHTegDaAhHQKz925uqFRJ1fZQoaAZHQJ/mA9ovi99oB03oA2gIR0Cs/kAC4jKQdX2UKGgGR0Cd8q+85CF9aAdN6ANoCEdArP+fva11GXV9lChoBkdAnEAd3wCr92gHTegDaAhHQK0GPXFtKqZ1fZQoaAZHQJu8/24/eLxoB03oA2gIR0CtCu6XSjQBdX2UKGgGR0CT0V/336AOaAdN6ANoCEdArQta+HrQgXV9lChoBkdAl5RiIUJv52gHTegDaAhHQK0MuWUr08N1fZQoaAZHQJ+LE+KTB69oB03oA2gIR0CtFY+PikwfdX2UKGgGR0CflvlNUOuraAdN6ANoCEdArRwvvQWvbHV9lChoBkdAnIQg/cFhX2gHTegDaAhHQK0clH6uW8h1fZQoaAZHQJ9iZuLrHENoB03oA2gIR0CtHfASOBDpdX2UKGgGR0CfGC5ggHNYaAdN6ANoCEdArSR3DR+jM3V9lChoBkdAnin6jJuEVWgHTegDaAhHQK0o3f6XSjR1fZQoaAZHQJtAnbtZ3cJoB03oA2gIR0CtKUJRoAXEdX2UKGgGR0CaVVt9x6v8aAdN6ANoCEdArSqow9JSSHV9lChoBkdAkt+kTtb9qGgHTegDaAhHQK0yj/ACW/t1fZQoaAZHQJiWQBkqc3FoB03oA2gIR0CtOf3Td+G5dX2UKGgGR0CYQVnJ1aGIaAdN6ANoCEdArTqvd43WF3V9lChoBkdAmdc8uez2OGgHTegDaAhHQK08Np48lol1fZQoaAZHQJ3uz6yjYZloB03oA2gIR0CtQt9wm3OOdX2UKGgGR0CgJGZc9nscaAdN6ANoCEdArUeR7ojfN3V9lChoBkdAmtF15OafBmgHTegDaAhHQK1H++Pikwh1fZQoaAZHQJe9ASyt3fRoB03oA2gIR0CtSVmetjkNdX2UKGgGR0CeW5EHt4RmaAdN6ANoCEdArVAtVT72tnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1941.0779978635649, "std_reward": 121.3500815631173, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-20T09:32:19.217693"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2521
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f55a314c87af9fe3a67c91d247c17a3ae471d618cb9cde14274013b9382e3b37
|
3 |
size 2521
|