besa2001 commited on
Commit
1f7bb6d
1 Parent(s): 23791ab

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 600.26 +/- 106.57
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e16a41783eaf6b347701e117dd00c94365400438df4895fb72913cfd28a4c95
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b3544ce50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b3544cee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b3544cf70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b35452040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4b354520d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4b35452160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b354521f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b35452280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4b35452310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b354523a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b35452430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b354524c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f4b3544f330>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674067405657217413,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP3MQD/akYi+YwIHPy+BTz+ynMe/Vky7vwwAob9ypw6//CtCP9IyDL/MaYS/yT4XP7xtq78E3Cc/foHmPqEOmb+m8l+/06ZZP5DVBL/IWQNATCZnv0DgYD0bCKo+Mq64P3eHqb9iZ9M+pskBwAgZob8M6DM/PqWGvyE9mcA7mqK+cmVQv9n7Xj9UG5S/KKgmwGUhVD+DxyG8KxA4QFQugryxkby/M00YO5MxJz9zPhc/DS/dvlktZr+Xoi0/d1WEPoXLF0ADIHK9BHgyQEzvIb3MSUE/YmfTPk95/D4IGaG/52GEP9KSlL4kgAQ/07ItP1gSGsAKccq+CPCqv850er9+4jU/bfVFv0HoKj5ssR/ArMa8v+U1NTyrnJI+ItqoP4hwQL+06j2/QHsav3bJXb91Fma/ebx4PHdN4b3LXgRAzElBP2Jn0z5Pefw+CBmhv05oVD+1zuC/yoQowBZBgj5ucGo+g9hLP2CkTb6hs+C/vyVEP2zGQb0Qjus/FitUPuy/vL+7W4m71ueLvi4jk779rDS/55s4v0jkPj/6Qj08mhnxP+c/GD/LUzJA+/t3vMxJQT9iZ9M+T3n8PggZob+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEcqG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3bgRvgAAAAAzNu+/AAAAANwpzb0AAAAAuk3wPwAAAAAuKp29AAAAANon5D8AAAAA9ofLPAAAAACoIvG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdwMRtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgATtyD0AAAAAvFjbvwAAAAC3EA8+AAAAAL5p7T8AAAAAxOvuvQAAAADVl/E/AAAAAND7Or0AAAAAVPjxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOeV9TUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIACbhq9AAAAACzt578AAAAAldKHPQAAAAAKEOw/AAAAAEMD5z0AAAAAyLbZPwAAAACK0QI+AAAAAGGQ4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACM4zO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAGcBPgAAAAAeE/6/AAAAANcSGb0AAAAAziABQAAAAAAyGns9AAAAAGA4+z8AAAAAmRahPAAAAADoM/a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ2AbirDIimMAWyUTegDjAF0lEdAq0VlDtw71nV9lChoBkdAmjrq8tf5UWgHTegDaAhHQKtFd4/u9e11fZQoaAZHQJ1o/xG2CuloB03oA2gIR0CrSRIKMNtqdX2UKGgGR0CaPJ2vjfelaAdN6ANoCEdAq05NqUNayXV9lChoBkdAlgs5mh/RV2gHTegDaAhHQKtTNGtp22Z1fZQoaAZHQJo7tv1lGw1oB03oA2gIR0CrU0iZF5OadX2UKGgGR0CdvIvttyggaAdN6ANoCEdAq1bk6gdwN3V9lChoBkdAnszrxy4nW2gHTegDaAhHQKtcGdqcmSh1fZQoaAZHQJm/qYAsCkpoB03oA2gIR0CrYQKekHlfdX2UKGgGR0Cc1sm5UcXFaAdN6ANoCEdAq2EV7pmmL3V9lChoBkdAmTSvtY0VJ2gHTegDaAhHQKtku065oXd1fZQoaAZHQJgYdr0rbxpoB03oA2gIR0Crae4u9OARdX2UKGgGR0CbCyaYu01JaAdN6ANoCEdAq27dqesgdXV9lChoBkdAmsqrvXsgMmgHTegDaAhHQKtu8CA+Y+l1fZQoaAZHQJvz08TzundoB03oA2gIR0CrcpSflIVedX2UKGgGR0CaLC6Oo5xSaAdN6ANoCEdAq3erOcDr7nV9lChoBkdAmy2M3++/QGgHTegDaAhHQKt8h6Tnq3V1fZQoaAZHQJaG4vRJEploB03oA2gIR0CrfJqKgqVhdX2UKGgGR0CYm27UG3WnaAdN6ANoCEdAq4BAGB4D93V9lChoBkdAmpZFXV9WqGgHTegDaAhHQKuFZOsT37F1fZQoaAZHQJscmOT7l7toB03oA2gIR0CrilyFXaJzdX2UKGgGR0CZ617AtWdVaAdN6ANoCEdAq4pvViF0xXV9lChoBkdAm76q+vhZQ2gHTegDaAhHQKuOCphnanJ1fZQoaAZHQJtZkz+FUQ1oB03oA2gIR0Crk0kgfU4JdX2UKGgGR0CcZtwGnn+yaAdN6ANoCEdAq5g+KdhAnnV9lChoBkdAlUoF49ovjGgHTegDaAhHQKuYUXXyy2R1fZQoaAZHQJqFJ+so2GZoB03oA2gIR0Crm/LE9+w1dX2UKGgGR0CYmPF9a2WqaAdN6ANoCEdAq6EURe1KG3V9lChoBkdAmp5msijcmGgHTegDaAhHQKul+X+l0o11fZQoaAZHQJy/rvZyuIRoB03oA2gIR0CrpgvD50r9dX2UKGgGR0CYONe+mFajaAdN6ANoCEdAq6m61E3KjnV9lChoBkdAl5h6GgzxgGgHTegDaAhHQKuvE3mV7hN1fZQoaAZHQJWj0t6HCXRoB03oA2gIR0Crt+Ryn1nNdX2UKGgGR0CZZrkmQbMpaAdN6ANoCEdAq7gEIJJGv3V9lChoBkdAmvnLpV0cO2gHTegDaAhHQKu93s/pt791fZQoaAZHQJm77WqcVgxoB03oA2gIR0CrxHmdiDujdX2UKGgGR0CcP/2g3974aAdN6ANoCEdAq8ly0OVgQnV9lChoBkdAmgXJyIYWL2gHTegDaAhHQKvJhVH4Glh1fZQoaAZHQJXscfV7QcBoB03oA2gIR0CrzSUXYUWVdX2UKGgGR0CXIKPykKu0aAdN6ANoCEdAq9JPryDqW3V9lChoBkdAkBYSMglniGgHTegDaAhHQKvXUVW0Z3t1fZQoaAZHQJcYiDvmYBxoB03oA2gIR0Cr12RFqi48dX2UKGgGR0CYtCAEdNnHaAdN6ANoCEdAq9sIk/r0KHV9lChoBkdAlMkGGucME2gHTegDaAhHQKvgPUXHim51fZQoaAZHQJIpCrcTJyRoB03oA2gIR0Cr5S9Vea8ZdX2UKGgGR0CYFsVqveP8aAdN6ANoCEdAq+VCz9jwx3V9lChoBkdAmBmsNhE0BWgHTegDaAhHQKvo7crRSgp1fZQoaAZHQJr/AhLXcxloB03oA2gIR0Cr7iAGKQ7tdX2UKGgGR0CZpIN8E3bVaAdN6ANoCEdAq/MHQ+lj3HV9lChoBkdAmQEkeuFHrmgHTegDaAhHQKvzGshgVoJ1fZQoaAZHQJYQAxdpqRFoB03oA2gIR0Cr9tdZA6dUdX2UKGgGR0CY3fMFlkH2aAdN6ANoCEdAq/wV1fVqe3V9lChoBkdAmMifNNahYmgHTegDaAhHQKwBFSlWOp91fZQoaAZHQJsEKVX3g1poB03oA2gIR0CsASiNS619dX2UKGgGR0CYc6om5UcXaAdN6ANoCEdArATZVfeDWnV9lChoBkdAkG4dt65Xl2gHTegDaAhHQKwJ/jMmnfl1fZQoaAZHQJHJetnwob5oB03oA2gIR0CsDum65Gz9dX2UKGgGR0B68qpR4yGjaAdN6ANoCEdArA77viLl3nV9lChoBkdAl6ncBdUsF2gHTegDaAhHQKwSn4h2W6d1fZQoaAZHQJZ/2ZML4N9oB03oA2gIR0CsF9uNgjQidX2UKGgGR0CaIejS5RTCaAdN6ANoCEdArBy8K1G9YnV9lChoBkdAmHR6ZtvXLGgHTegDaAhHQKwczmseXAx1fZQoaAZHQJeQWcEvCdloB03oA2gIR0CsIG5Cv5gxdX2UKGgGR0CWt4W43FUAaAdN6ANoCEdArCWUqYqoZXV9lChoBkdAl0y3RTjvNWgHTegDaAhHQKwqlAE+xGF1fZQoaAZHQId9nnbItDloB03oA2gIR0CsKqcKPXCkdX2UKGgGR0CZYFeAd4mkaAdN6ANoCEdArC5UzGgi/3V9lChoBkdAhojeLvTgEWgHTegDaAhHQKwzne3QUpN1fZQoaAZHQJOXjC66J69oB03oA2gIR0CsOIaQeV9ndX2UKGgGR0CTTtCe2/i6aAdN6ANoCEdArDiZHy3CsXV9lChoBkdAkEG4FV1fV2gHTegDaAhHQKw8RldTo+x1fZQoaAZHQJMREovzvqloB03oA2gIR0CsQXn/1g6VdX2UKGgGR0CPAUUM5OrRaAdN6ANoCEdArEZxgVoHs3V9lChoBkdAh5ZjbBXS0GgHTegDaAhHQKxGhIjGDL91fZQoaAZHQHCByjQAuI1oB03oA2gIR0CsSjGeDnNgdX2UKGgGR0CByIwblzU7aAdN6ANoCEdArE9y1TisGXV9lChoBkdAih4fhddE9mgHTegDaAhHQKxUQt29tdl1fZQoaAZHQHXBhgVoHs1oB03oA2gIR0CsVFVF6RhddX2UKGgGR0CSdx5BTn7paAdN6ANoCEdArFfnoq0+knV9lChoBkdAkYh3e3x4IWgHTegDaAhHQKxdAbDMvAZ1fZQoaAZHQHz+bTUiILxoB03oA2gIR0CsYc/vOQhfdX2UKGgGR0CVr/jx0+1SaAdN6ANoCEdArGHjKifxt3V9lChoBkdAkH8umBOHnGgHTegDaAhHQKxleWC2+f11fZQoaAZHQJYuIg7o0Q9oB03oA2gIR0Csao19F4LUdX2UKGgGR0CCPvGvwEyMaAdN6ANoCEdArG9vGIbfg3V9lChoBkdAc4aSde6ZpmgHTegDaAhHQKxvgSdvsJJ1fZQoaAZHQHib99lVcUxoB03oA2gIR0Cscx6dUbT+dX2UKGgGR0CCJhdQfp2VaAdN6ANoCEdArHgvB3zMA3V9lChoBkdAe07QT238XWgHTegDaAhHQKx9EasIVud1fZQoaAZHQIOtAnF5v99oB03oA2gIR0CsfSWfkFOgdX2UKGgGR0CFcBkaMrEtaAdN6ANoCEdArICzImw7knV9lChoBkdAXAD0AcT8HmgHTegDaAhHQKyF3Sl3yI51fZQoaAZHQIEsbhm5DqpoB03oA2gIR0CsirgOrhitdX2UKGgGR0Bzva/7BO58aAdN6ANoCEdArIrJcmjTKHV9lChoBkdAfpASdvsJIGgHTegDaAhHQKyOXCIk7fZ1fZQoaAZHQINdhArxy4poB03oA2gIR0Csk3wfIS13dX2UKGgGR0B/AWrKeTV2aAdN6ANoCEdArJhMXpGFz3V9lChoBkdAfg1y2hIvrWgHTegDaAhHQKyYXztkWh11fZQoaAZHQI+PsFhXr+poB03oA2gIR0Csm/SpiqhldX2UKGgGR0CD0Kx3V09yaAdN6ANoCEdArKDtHFxXGXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f48e74a3a8ffc872065f107bdecb797aa2a2d8169b861e01536f14f3a2d997f5
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4c622eb548c3cd428d457dc8a49b5a251db3d11f4a74eff336dd78508f0731b
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b3544ce50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b3544cee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b3544cf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b35452040>", "_build": "<function ActorCriticPolicy._build at 0x7f4b354520d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4b35452160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b354521f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b35452280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4b35452310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b354523a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b35452430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b354524c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4b3544f330>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674067405657217413, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP3MQD/akYi+YwIHPy+BTz+ynMe/Vky7vwwAob9ypw6//CtCP9IyDL/MaYS/yT4XP7xtq78E3Cc/foHmPqEOmb+m8l+/06ZZP5DVBL/IWQNATCZnv0DgYD0bCKo+Mq64P3eHqb9iZ9M+pskBwAgZob8M6DM/PqWGvyE9mcA7mqK+cmVQv9n7Xj9UG5S/KKgmwGUhVD+DxyG8KxA4QFQugryxkby/M00YO5MxJz9zPhc/DS/dvlktZr+Xoi0/d1WEPoXLF0ADIHK9BHgyQEzvIb3MSUE/YmfTPk95/D4IGaG/52GEP9KSlL4kgAQ/07ItP1gSGsAKccq+CPCqv850er9+4jU/bfVFv0HoKj5ssR/ArMa8v+U1NTyrnJI+ItqoP4hwQL+06j2/QHsav3bJXb91Fma/ebx4PHdN4b3LXgRAzElBP2Jn0z5Pefw+CBmhv05oVD+1zuC/yoQowBZBgj5ucGo+g9hLP2CkTb6hs+C/vyVEP2zGQb0Qjus/FitUPuy/vL+7W4m71ueLvi4jk779rDS/55s4v0jkPj/6Qj08mhnxP+c/GD/LUzJA+/t3vMxJQT9iZ9M+T3n8PggZob+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEcqG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3bgRvgAAAAAzNu+/AAAAANwpzb0AAAAAuk3wPwAAAAAuKp29AAAAANon5D8AAAAA9ofLPAAAAACoIvG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdwMRtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgATtyD0AAAAAvFjbvwAAAAC3EA8+AAAAAL5p7T8AAAAAxOvuvQAAAADVl/E/AAAAAND7Or0AAAAAVPjxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOeV9TUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIACbhq9AAAAACzt578AAAAAldKHPQAAAAAKEOw/AAAAAEMD5z0AAAAAyLbZPwAAAACK0QI+AAAAAGGQ4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACM4zO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAGcBPgAAAAAeE/6/AAAAANcSGb0AAAAAziABQAAAAAAyGns9AAAAAGA4+z8AAAAAmRahPAAAAADoM/a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ2AbirDIimMAWyUTegDjAF0lEdAq0VlDtw71nV9lChoBkdAmjrq8tf5UWgHTegDaAhHQKtFd4/u9e11fZQoaAZHQJ1o/xG2CuloB03oA2gIR0CrSRIKMNtqdX2UKGgGR0CaPJ2vjfelaAdN6ANoCEdAq05NqUNayXV9lChoBkdAlgs5mh/RV2gHTegDaAhHQKtTNGtp22Z1fZQoaAZHQJo7tv1lGw1oB03oA2gIR0CrU0iZF5OadX2UKGgGR0CdvIvttyggaAdN6ANoCEdAq1bk6gdwN3V9lChoBkdAnszrxy4nW2gHTegDaAhHQKtcGdqcmSh1fZQoaAZHQJm/qYAsCkpoB03oA2gIR0CrYQKekHlfdX2UKGgGR0Cc1sm5UcXFaAdN6ANoCEdAq2EV7pmmL3V9lChoBkdAmTSvtY0VJ2gHTegDaAhHQKtku065oXd1fZQoaAZHQJgYdr0rbxpoB03oA2gIR0Crae4u9OARdX2UKGgGR0CbCyaYu01JaAdN6ANoCEdAq27dqesgdXV9lChoBkdAmsqrvXsgMmgHTegDaAhHQKtu8CA+Y+l1fZQoaAZHQJvz08TzundoB03oA2gIR0CrcpSflIVedX2UKGgGR0CaLC6Oo5xSaAdN6ANoCEdAq3erOcDr7nV9lChoBkdAmy2M3++/QGgHTegDaAhHQKt8h6Tnq3V1fZQoaAZHQJaG4vRJEploB03oA2gIR0CrfJqKgqVhdX2UKGgGR0CYm27UG3WnaAdN6ANoCEdAq4BAGB4D93V9lChoBkdAmpZFXV9WqGgHTegDaAhHQKuFZOsT37F1fZQoaAZHQJscmOT7l7toB03oA2gIR0CrilyFXaJzdX2UKGgGR0CZ617AtWdVaAdN6ANoCEdAq4pvViF0xXV9lChoBkdAm76q+vhZQ2gHTegDaAhHQKuOCphnanJ1fZQoaAZHQJtZkz+FUQ1oB03oA2gIR0Crk0kgfU4JdX2UKGgGR0CcZtwGnn+yaAdN6ANoCEdAq5g+KdhAnnV9lChoBkdAlUoF49ovjGgHTegDaAhHQKuYUXXyy2R1fZQoaAZHQJqFJ+so2GZoB03oA2gIR0Crm/LE9+w1dX2UKGgGR0CYmPF9a2WqaAdN6ANoCEdAq6EURe1KG3V9lChoBkdAmp5msijcmGgHTegDaAhHQKul+X+l0o11fZQoaAZHQJy/rvZyuIRoB03oA2gIR0CrpgvD50r9dX2UKGgGR0CYONe+mFajaAdN6ANoCEdAq6m61E3KjnV9lChoBkdAl5h6GgzxgGgHTegDaAhHQKuvE3mV7hN1fZQoaAZHQJWj0t6HCXRoB03oA2gIR0Crt+Ryn1nNdX2UKGgGR0CZZrkmQbMpaAdN6ANoCEdAq7gEIJJGv3V9lChoBkdAmvnLpV0cO2gHTegDaAhHQKu93s/pt791fZQoaAZHQJm77WqcVgxoB03oA2gIR0CrxHmdiDujdX2UKGgGR0CcP/2g3974aAdN6ANoCEdAq8ly0OVgQnV9lChoBkdAmgXJyIYWL2gHTegDaAhHQKvJhVH4Glh1fZQoaAZHQJXscfV7QcBoB03oA2gIR0CrzSUXYUWVdX2UKGgGR0CXIKPykKu0aAdN6ANoCEdAq9JPryDqW3V9lChoBkdAkBYSMglniGgHTegDaAhHQKvXUVW0Z3t1fZQoaAZHQJcYiDvmYBxoB03oA2gIR0Cr12RFqi48dX2UKGgGR0CYtCAEdNnHaAdN6ANoCEdAq9sIk/r0KHV9lChoBkdAlMkGGucME2gHTegDaAhHQKvgPUXHim51fZQoaAZHQJIpCrcTJyRoB03oA2gIR0Cr5S9Vea8ZdX2UKGgGR0CYFsVqveP8aAdN6ANoCEdAq+VCz9jwx3V9lChoBkdAmBmsNhE0BWgHTegDaAhHQKvo7crRSgp1fZQoaAZHQJr/AhLXcxloB03oA2gIR0Cr7iAGKQ7tdX2UKGgGR0CZpIN8E3bVaAdN6ANoCEdAq/MHQ+lj3HV9lChoBkdAmQEkeuFHrmgHTegDaAhHQKvzGshgVoJ1fZQoaAZHQJYQAxdpqRFoB03oA2gIR0Cr9tdZA6dUdX2UKGgGR0CY3fMFlkH2aAdN6ANoCEdAq/wV1fVqe3V9lChoBkdAmMifNNahYmgHTegDaAhHQKwBFSlWOp91fZQoaAZHQJsEKVX3g1poB03oA2gIR0CsASiNS619dX2UKGgGR0CYc6om5UcXaAdN6ANoCEdArATZVfeDWnV9lChoBkdAkG4dt65Xl2gHTegDaAhHQKwJ/jMmnfl1fZQoaAZHQJHJetnwob5oB03oA2gIR0CsDum65Gz9dX2UKGgGR0B68qpR4yGjaAdN6ANoCEdArA77viLl3nV9lChoBkdAl6ncBdUsF2gHTegDaAhHQKwSn4h2W6d1fZQoaAZHQJZ/2ZML4N9oB03oA2gIR0CsF9uNgjQidX2UKGgGR0CaIejS5RTCaAdN6ANoCEdArBy8K1G9YnV9lChoBkdAmHR6ZtvXLGgHTegDaAhHQKwczmseXAx1fZQoaAZHQJeQWcEvCdloB03oA2gIR0CsIG5Cv5gxdX2UKGgGR0CWt4W43FUAaAdN6ANoCEdArCWUqYqoZXV9lChoBkdAl0y3RTjvNWgHTegDaAhHQKwqlAE+xGF1fZQoaAZHQId9nnbItDloB03oA2gIR0CsKqcKPXCkdX2UKGgGR0CZYFeAd4mkaAdN6ANoCEdArC5UzGgi/3V9lChoBkdAhojeLvTgEWgHTegDaAhHQKwzne3QUpN1fZQoaAZHQJOXjC66J69oB03oA2gIR0CsOIaQeV9ndX2UKGgGR0CTTtCe2/i6aAdN6ANoCEdArDiZHy3CsXV9lChoBkdAkEG4FV1fV2gHTegDaAhHQKw8RldTo+x1fZQoaAZHQJMREovzvqloB03oA2gIR0CsQXn/1g6VdX2UKGgGR0CPAUUM5OrRaAdN6ANoCEdArEZxgVoHs3V9lChoBkdAh5ZjbBXS0GgHTegDaAhHQKxGhIjGDL91fZQoaAZHQHCByjQAuI1oB03oA2gIR0CsSjGeDnNgdX2UKGgGR0CByIwblzU7aAdN6ANoCEdArE9y1TisGXV9lChoBkdAih4fhddE9mgHTegDaAhHQKxUQt29tdl1fZQoaAZHQHXBhgVoHs1oB03oA2gIR0CsVFVF6RhddX2UKGgGR0CSdx5BTn7paAdN6ANoCEdArFfnoq0+knV9lChoBkdAkYh3e3x4IWgHTegDaAhHQKxdAbDMvAZ1fZQoaAZHQHz+bTUiILxoB03oA2gIR0CsYc/vOQhfdX2UKGgGR0CVr/jx0+1SaAdN6ANoCEdArGHjKifxt3V9lChoBkdAkH8umBOHnGgHTegDaAhHQKxleWC2+f11fZQoaAZHQJYuIg7o0Q9oB03oA2gIR0Csao19F4LUdX2UKGgGR0CCPvGvwEyMaAdN6ANoCEdArG9vGIbfg3V9lChoBkdAc4aSde6ZpmgHTegDaAhHQKxvgSdvsJJ1fZQoaAZHQHib99lVcUxoB03oA2gIR0Cscx6dUbT+dX2UKGgGR0CCJhdQfp2VaAdN6ANoCEdArHgvB3zMA3V9lChoBkdAe07QT238XWgHTegDaAhHQKx9EasIVud1fZQoaAZHQIOtAnF5v99oB03oA2gIR0CsfSWfkFOgdX2UKGgGR0CFcBkaMrEtaAdN6ANoCEdArICzImw7knV9lChoBkdAXAD0AcT8HmgHTegDaAhHQKyF3Sl3yI51fZQoaAZHQIEsbhm5DqpoB03oA2gIR0CsirgOrhitdX2UKGgGR0Bzva/7BO58aAdN6ANoCEdArIrJcmjTKHV9lChoBkdAfpASdvsJIGgHTegDaAhHQKyOXCIk7fZ1fZQoaAZHQINdhArxy4poB03oA2gIR0Csk3wfIS13dX2UKGgGR0B/AWrKeTV2aAdN6ANoCEdArJhMXpGFz3V9lChoBkdAfg1y2hIvrWgHTegDaAhHQKyYXztkWh11fZQoaAZHQI+PsFhXr+poB03oA2gIR0Csm/SpiqhldX2UKGgGR0CD0Kx3V09yaAdN6ANoCEdArKDtHFxXGXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (842 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 600.260931414277, "std_reward": 106.57477921456304, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T19:48:40.975356"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28253e195514cd1d8ac416c50112e8f5abd393a10e8e58d2ac8bd95ca803b666
3
+ size 2521