|
from transformers import PretrainedConfig |
|
|
|
|
|
class SimilarityModelConfig(PretrainedConfig): |
|
model_type = 'roberta' |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
self.embedding_model_config = kwargs.get("embedding_model_config") |
|
self.score_model_config = kwargs.get("score_model_config") |
|
self.weighting_function_config = kwargs.get("weighting_function_config") |
|
|
|
|
|
nama_base = SimilarityModelConfig( |
|
embedding_model_config={ |
|
"model_class": 'roberta', |
|
"model_name":'roberta-base', |
|
"pooling": 'pooler', |
|
"normalize":True, |
|
"d":128, |
|
"prompt":'', |
|
"device":'cpu', |
|
"add_upper": True, |
|
"upper_case":False |
|
}, |
|
score_model_config={"alpha": 50}, |
|
weighting_function_config={"weighting_exponent": 0.5}, |
|
device="cpu", |
|
) |
|
|
|
|