Upload model
Browse files- config.json +30 -0
- configuration.py +30 -0
- embedding_model.py +121 -0
- embeddings.py +637 -0
- match_groups.py +870 -0
- pytorch_model.bin +3 -0
- scoring.py +196 -0
- scoring_model.py +60 -0
- similarity_model.py +369 -0
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SimilarityModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration.SimilarityModelConfig",
|
7 |
+
"AutoModel": "similarity_model.SimilarityModel"
|
8 |
+
},
|
9 |
+
"device": "cpu",
|
10 |
+
"embedding_model_config": {
|
11 |
+
"add_upper": true,
|
12 |
+
"d": 128,
|
13 |
+
"device": "cpu",
|
14 |
+
"model_class": "roberta",
|
15 |
+
"model_name": "roberta-base",
|
16 |
+
"normalize": true,
|
17 |
+
"pooling": "pooler",
|
18 |
+
"prompt": "",
|
19 |
+
"upper_case": false
|
20 |
+
},
|
21 |
+
"model_type": "roberta",
|
22 |
+
"score_model_config": {
|
23 |
+
"alpha": 50
|
24 |
+
},
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.27.4",
|
27 |
+
"weighting_function_config": {
|
28 |
+
"weighting_exponent": 0.5
|
29 |
+
}
|
30 |
+
}
|
configuration.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class SimilarityModelConfig(PretrainedConfig):
|
5 |
+
model_type = 'roberta'
|
6 |
+
def __init__(self, **kwargs):
|
7 |
+
super().__init__(**kwargs)
|
8 |
+
|
9 |
+
self.embedding_model_config = kwargs.get("embedding_model_config")
|
10 |
+
self.score_model_config = kwargs.get("score_model_config")
|
11 |
+
self.weighting_function_config = kwargs.get("weighting_function_config")
|
12 |
+
|
13 |
+
|
14 |
+
nama_base = SimilarityModelConfig(
|
15 |
+
embedding_model_config={
|
16 |
+
"model_class": 'roberta',
|
17 |
+
"model_name":'roberta-base',
|
18 |
+
"pooling": 'pooler',
|
19 |
+
"normalize":True,
|
20 |
+
"d":128,
|
21 |
+
"prompt":'',
|
22 |
+
"device":'cpu',
|
23 |
+
"add_upper": True,
|
24 |
+
"upper_case":False
|
25 |
+
},
|
26 |
+
score_model_config={"alpha": 50},
|
27 |
+
weighting_function_config={"weighting_exponent": 0.5},
|
28 |
+
device="cpu",
|
29 |
+
)
|
30 |
+
|
embedding_model.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, RobertaModel
|
3 |
+
|
4 |
+
class EmbeddingModel(torch.nn.Module):
|
5 |
+
|
6 |
+
|
7 |
+
tokenizers = {'roberta': RobertaModel}
|
8 |
+
"""
|
9 |
+
A basic wrapper around a Hugging Face transformer model.
|
10 |
+
Takes a string as input and produces an embedding vector of size d.
|
11 |
+
"""
|
12 |
+
def __init__(self, config, **kwargs):
|
13 |
+
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
self.model_class = self.tokenizers.get(config.get("model_class").lower())
|
17 |
+
self.model_name = config.get("model_name")
|
18 |
+
self.pooling = config.get("pooling")
|
19 |
+
self.normalize = config.get("normalize")
|
20 |
+
self.d = config.get("d")
|
21 |
+
self.prompt = config.get("prompt")
|
22 |
+
self.add_upper = config.get("add_upper")
|
23 |
+
self.upper_case = config.get("upper_case")
|
24 |
+
|
25 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
26 |
+
|
27 |
+
try:
|
28 |
+
self.transformer = self.model_class.from_pretrained(self.model_name)
|
29 |
+
except OSError:
|
30 |
+
self.transformer = self.model_class.from_pretrained(self.model_name,from_tf=True)
|
31 |
+
|
32 |
+
self.dropout = torch.nn.Dropout(0.5)
|
33 |
+
|
34 |
+
if self.d:
|
35 |
+
# Project embedding to a lower dimension
|
36 |
+
# Initialization based on random projection LSH (preserves approximate cosine distances)
|
37 |
+
self.projection = torch.nn.Linear(self.transformer.config.hidden_size,self.d)
|
38 |
+
torch.nn.init.normal_(self.projection.weight)
|
39 |
+
torch.nn.init.constant_(self.projection.bias,0)
|
40 |
+
|
41 |
+
self.to(config.get("device"))
|
42 |
+
|
43 |
+
def to(self,device):
|
44 |
+
super().to(device)
|
45 |
+
self.device = device
|
46 |
+
|
47 |
+
def encode(self,strings):
|
48 |
+
if self.prompt is not None:
|
49 |
+
strings = [self.prompt + s for s in strings]
|
50 |
+
if self.add_upper:
|
51 |
+
strings = [s + ' </s> ' + s.upper() for s in strings]
|
52 |
+
if self.upper_case:
|
53 |
+
strings = [s + ' </s> ' + s.upper() for s in strings]
|
54 |
+
|
55 |
+
try:
|
56 |
+
encoded = self.tokenizer(strings,padding=True,truncation=True)
|
57 |
+
except Exception as e:
|
58 |
+
print(strings)
|
59 |
+
raise Exception(e)
|
60 |
+
input_ids = torch.tensor(encoded['input_ids']).long()
|
61 |
+
attention_mask = torch.tensor(encoded['attention_mask'])
|
62 |
+
|
63 |
+
return input_ids,attention_mask
|
64 |
+
|
65 |
+
def forward(self,strings):
|
66 |
+
|
67 |
+
with torch.no_grad():
|
68 |
+
input_ids,attention_mask = self.encode(strings)
|
69 |
+
|
70 |
+
input_ids = input_ids.to(device=self.device)
|
71 |
+
attention_mask = attention_mask.to(device=self.device)
|
72 |
+
|
73 |
+
# with amp.autocast(self.amp):
|
74 |
+
batch_out = self.transformer(input_ids=input_ids,
|
75 |
+
attention_mask=attention_mask,
|
76 |
+
return_dict=True)
|
77 |
+
|
78 |
+
if self.pooling == 'pooler':
|
79 |
+
v = batch_out['pooler_output']
|
80 |
+
elif self.pooling == 'mean':
|
81 |
+
h = batch_out['last_hidden_state']
|
82 |
+
|
83 |
+
# Compute mean of unmasked token vectors
|
84 |
+
h = h*attention_mask[:,:,None]
|
85 |
+
v = h.sum(dim=1)/attention_mask.sum(dim=1)[:,None]
|
86 |
+
|
87 |
+
if self.d:
|
88 |
+
v = self.projection(v)
|
89 |
+
|
90 |
+
if self.normalize:
|
91 |
+
v = v/torch.sqrt((v**2).sum(dim=1)[:,None])
|
92 |
+
|
93 |
+
return v
|
94 |
+
|
95 |
+
def config_optimizer(self,transformer_lr=1e-5,projection_lr=1e-4):
|
96 |
+
|
97 |
+
parameters = list(self.named_parameters())
|
98 |
+
grouped_parameters = [
|
99 |
+
{
|
100 |
+
'params': [param for name,param in parameters if name.startswith('transformer') and name.endswith('bias')],
|
101 |
+
'weight_decay_rate': 0.0,
|
102 |
+
'lr':transformer_lr,
|
103 |
+
},
|
104 |
+
{
|
105 |
+
'params': [param for name,param in parameters if name.startswith('transformer') and not name.endswith('bias')],
|
106 |
+
'weight_decay_rate': 0.0,
|
107 |
+
'lr':transformer_lr,
|
108 |
+
},
|
109 |
+
{
|
110 |
+
'params': [param for name,param in parameters if name.startswith('projection')],
|
111 |
+
'weight_decay_rate': 0.0,
|
112 |
+
'lr':projection_lr,
|
113 |
+
},
|
114 |
+
]
|
115 |
+
|
116 |
+
# Drop groups with lr of 0
|
117 |
+
grouped_parameters = [p for p in grouped_parameters if p['lr']]
|
118 |
+
|
119 |
+
optimizer = torch.optim.AdamW(grouped_parameters)
|
120 |
+
|
121 |
+
return optimizer
|
embeddings.py
ADDED
@@ -0,0 +1,637 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from tqdm import tqdm
|
4 |
+
from copy import copy
|
5 |
+
from collections import Counter
|
6 |
+
import torch
|
7 |
+
from zipfile import ZipFile
|
8 |
+
import pickle
|
9 |
+
from io import BytesIO
|
10 |
+
|
11 |
+
from .match_groups import MatchGroups
|
12 |
+
|
13 |
+
|
14 |
+
class Embeddings(torch.nn.Module):
|
15 |
+
"""
|
16 |
+
Stores embeddings for a fixed array of strings and provides methods for
|
17 |
+
clustering the strings to create MatchGroups objects according to different
|
18 |
+
algorithms.
|
19 |
+
"""
|
20 |
+
def __init__(self,strings,V,score_model,weighting_function,counts,device='cpu'):
|
21 |
+
super().__init__()
|
22 |
+
|
23 |
+
self.strings = np.array(list(strings))
|
24 |
+
self.string_map = {s:i for i,s in enumerate(strings)}
|
25 |
+
self.V = V
|
26 |
+
self.counts = counts
|
27 |
+
self.w = weighting_function(counts)
|
28 |
+
self.score_model = score_model
|
29 |
+
self.weighting_function = weighting_function
|
30 |
+
self.device = device
|
31 |
+
|
32 |
+
self.to(device)
|
33 |
+
|
34 |
+
def __repr__(self):
|
35 |
+
return f'<nama.Embeddings containing {self.V.shape[1]}-d vectors for {len(self)} strings'
|
36 |
+
|
37 |
+
def to(self,device):
|
38 |
+
super().to(device)
|
39 |
+
self.V = self.V.to(device)
|
40 |
+
self.counts = self.counts.to(device)
|
41 |
+
self.w = self.w.to(device)
|
42 |
+
self.score_model.to(device)
|
43 |
+
self.device = device
|
44 |
+
|
45 |
+
def save(self,f):
|
46 |
+
"""
|
47 |
+
Save embeddings in a simple custom zipped archive format (torch.save
|
48 |
+
works too, but it requires huge amounts of memory to serialize large
|
49 |
+
embeddings objects).
|
50 |
+
"""
|
51 |
+
with ZipFile(f,'w') as zip:
|
52 |
+
|
53 |
+
# Write score model
|
54 |
+
zip.writestr('score_model.pkl',pickle.dumps(self.score_model))
|
55 |
+
|
56 |
+
# Write score model
|
57 |
+
zip.writestr('weighting_function.pkl',pickle.dumps(self.weighting_function))
|
58 |
+
|
59 |
+
# Write string info
|
60 |
+
strings_df = pd.DataFrame().assign(
|
61 |
+
string=self.strings,
|
62 |
+
count=self.counts.to('cpu').numpy())
|
63 |
+
zip.writestr('strings.csv',strings_df.to_csv(index=False))
|
64 |
+
|
65 |
+
# Write embedding vectors
|
66 |
+
byte_io = BytesIO()
|
67 |
+
np.save(byte_io,self.V.to('cpu').numpy(),allow_pickle=False)
|
68 |
+
zip.writestr('V.npy',byte_io.getvalue())
|
69 |
+
|
70 |
+
def __getitem__(self,arg):
|
71 |
+
"""
|
72 |
+
Slice a Match Groups object
|
73 |
+
"""
|
74 |
+
if isinstance(arg,slice):
|
75 |
+
i = arg
|
76 |
+
elif isinstance(arg, MatchGroups):
|
77 |
+
return self[arg.strings()]
|
78 |
+
elif hasattr(arg,'__iter__'):
|
79 |
+
# Return a subset of the embeddings and their weights
|
80 |
+
string_map = self.string_map
|
81 |
+
i = [string_map[s] for s in arg]
|
82 |
+
|
83 |
+
if i == list(range(len(self))):
|
84 |
+
# Just selecting the whole match groups object - no need to slice the embedding
|
85 |
+
return copy(self)
|
86 |
+
else:
|
87 |
+
raise ValueError(f'Unknown slice input type ({type(input)}). Can only slice Embedding with a slice, match group, or iterable.')
|
88 |
+
|
89 |
+
new = copy(self)
|
90 |
+
new.strings = self.strings[i]
|
91 |
+
new.V = self.V[i]
|
92 |
+
new.counts = self.counts[i]
|
93 |
+
new.w = self.w[i]
|
94 |
+
new.string_map = {s:i for i,s in enumerate(new.strings)}
|
95 |
+
|
96 |
+
return new
|
97 |
+
|
98 |
+
def embed(self,grouping):
|
99 |
+
"""
|
100 |
+
Construct updated Embeddings with counts from the input MatchGroups
|
101 |
+
"""
|
102 |
+
new = self[grouping]
|
103 |
+
new.counts = torch.tensor([grouping.counts[s] for s in new.strings],device=self.device)
|
104 |
+
new.w = new.weighting_function(new.counts)
|
105 |
+
|
106 |
+
return new
|
107 |
+
|
108 |
+
def __len__(self):
|
109 |
+
return len(self.strings)
|
110 |
+
|
111 |
+
def _group_to_ids(self,grouping):
|
112 |
+
group_id_map = {g:i for i,g in enumerate(grouping.groups.keys())}
|
113 |
+
group_ids = torch.tensor([group_id_map[grouping[s]] for s in self.strings]).to(self.device)
|
114 |
+
return group_ids
|
115 |
+
|
116 |
+
def _ids_to_group(self,group_ids):
|
117 |
+
if isinstance(group_ids,torch.Tensor):
|
118 |
+
group_ids = group_ids.to('cpu').numpy()
|
119 |
+
|
120 |
+
strings = self.strings
|
121 |
+
counts = self.counts.to('cpu').numpy()
|
122 |
+
|
123 |
+
# Sort by group and string count
|
124 |
+
g_sort = np.lexsort((counts,group_ids))
|
125 |
+
group_ids = group_ids[g_sort]
|
126 |
+
strings = strings[g_sort]
|
127 |
+
counts = counts[g_sort]
|
128 |
+
|
129 |
+
# Identify group boundaries and split locations
|
130 |
+
split_locs = np.nonzero(group_ids[1:] != group_ids[:-1])[0] + 1
|
131 |
+
|
132 |
+
# Get grouped strings as separate arrays
|
133 |
+
groups = np.split(strings,split_locs)
|
134 |
+
|
135 |
+
# Build the groupings
|
136 |
+
grouping = MatchGroups()
|
137 |
+
grouping.counts = Counter({s:int(c) for s,c in zip(strings,counts)})
|
138 |
+
grouping.labels = {s:g[-1] for g in groups for s in g}
|
139 |
+
grouping.groups = {g[-1]:list(g) for g in groups}
|
140 |
+
|
141 |
+
return grouping
|
142 |
+
|
143 |
+
@torch.no_grad()
|
144 |
+
def _fast_unite_similar(self,group_ids,threshold=0.5,progress_bar=True,batch_size=64):
|
145 |
+
|
146 |
+
V = self.V
|
147 |
+
cos_threshold = self.score_model.score_to_cos(threshold)
|
148 |
+
|
149 |
+
for batch_start in tqdm(range(0,len(self),batch_size),
|
150 |
+
delay=1,desc='Predicting matches',disable=not progress_bar):
|
151 |
+
|
152 |
+
i_slice = slice(batch_start,batch_start+batch_size)
|
153 |
+
j_slice = slice(batch_start+1,None)
|
154 |
+
|
155 |
+
g_i = group_ids[i_slice]
|
156 |
+
g_j = group_ids[j_slice]
|
157 |
+
|
158 |
+
# Find j's with jaccard > threshold ("matches")
|
159 |
+
batch_matched = (V[i_slice]@V[j_slice].T >= cos_threshold) \
|
160 |
+
* (g_i[:,None] != g_j[None,:])
|
161 |
+
|
162 |
+
for k,matched in enumerate(batch_matched):
|
163 |
+
if matched.any():
|
164 |
+
# Get the group ids of the matched j's
|
165 |
+
matched_groups = g_j[matched]
|
166 |
+
|
167 |
+
# Identify all embeddings in these groups
|
168 |
+
ids_to_group = torch.isin(group_ids,matched_groups)
|
169 |
+
|
170 |
+
# Assign all matched embeddings to the same group
|
171 |
+
group_ids[ids_to_group] = g_i[k].clone()
|
172 |
+
|
173 |
+
return self._ids_to_group(group_ids)
|
174 |
+
|
175 |
+
@torch.no_grad()
|
176 |
+
def unite_similar(self,
|
177 |
+
threshold=0.5,
|
178 |
+
group_threshold=None,
|
179 |
+
always_match=None,
|
180 |
+
never_match=None,
|
181 |
+
batch_size=64,
|
182 |
+
progress_bar=True,
|
183 |
+
always_never_conflicts='warn',
|
184 |
+
return_united=False):
|
185 |
+
|
186 |
+
"""
|
187 |
+
Unite embedding strings according to predicted pairwise similarity.
|
188 |
+
|
189 |
+
- "theshold" sets the minimimum match similarity required to unite two strings.
|
190 |
+
- Note that strings with similarity<threshold can end up matched if they are
|
191 |
+
linked by a chain of sufficiently similar strings (matching is transitive).
|
192 |
+
"group_threshold" can be used to add an additional constraing on the minimum
|
193 |
+
similarity within each group.
|
194 |
+
- "group_threshold" sets the minimum similarity required within a single group.
|
195 |
+
- "always_match" takes any argument that can be used to unite strings. These
|
196 |
+
strings will always be matched.
|
197 |
+
- "never_match" takes a set, or a list of sets, where each set indicates two or
|
198 |
+
more strings that should never be united with each other (these strings may
|
199 |
+
still be united with other strings).
|
200 |
+
- "always_never_conflicts" determines how to handle conflicts between
|
201 |
+
"always_match" and "never_match":
|
202 |
+
- always_never_conflicts="warn": Check for conflicts and print a warning
|
203 |
+
if any are found (default)
|
204 |
+
- always_never_conflicts="raise": Check for conflicts and raise an error
|
205 |
+
if any are found
|
206 |
+
- always_never_conflicts="ignore": Do not check for conflicts ("always_match"
|
207 |
+
will take precedence)
|
208 |
+
|
209 |
+
If "group_threshold" or "never_match" arguments are supplied, strings pairs are
|
210 |
+
united in order of similarity. Highest similarity strings are matched first, and
|
211 |
+
before each time a new pair of strings is united, the function checks if this will
|
212 |
+
result in grouping any two strings with similarity<group_threshold. If so, this
|
213 |
+
pair is skipped. This version of the algorithm requires more memory and processing
|
214 |
+
time, but guaruntees deterministic output that is consistent with the constraints.
|
215 |
+
|
216 |
+
returns: MatchGroups object
|
217 |
+
"""
|
218 |
+
if group_threshold and group_threshold < threshold:
|
219 |
+
raise ValueError('group_threshold must be greater than or equal to threshold')
|
220 |
+
|
221 |
+
group_ids = torch.arange(len(self)).to(self.device)
|
222 |
+
|
223 |
+
if always_match is not None:
|
224 |
+
always_grouping = (MatchGroups(self.strings)
|
225 |
+
.unite(always_match))
|
226 |
+
always_match_labels = always_grouping.labels
|
227 |
+
|
228 |
+
|
229 |
+
# Use a simpler, faster prediction algorithm if possible
|
230 |
+
if not (return_united or group_threshold or (never_match is not None)):
|
231 |
+
if always_match is not None:
|
232 |
+
group_ids = self._group_to_ids(always_grouping)
|
233 |
+
|
234 |
+
return self._fast_unite_similar(
|
235 |
+
group_ids=group_ids,
|
236 |
+
threshold=threshold,
|
237 |
+
batch_size=batch_size,
|
238 |
+
progress_bar=progress_bar)
|
239 |
+
|
240 |
+
if never_match is not None:
|
241 |
+
# Ensure never_match is a nested list
|
242 |
+
if all(isinstance(s,str) for s in never_match):
|
243 |
+
never_match = [never_match]
|
244 |
+
|
245 |
+
if always_match is not None:
|
246 |
+
|
247 |
+
assert always_never_conflicts in ['raise','warn','ignore']
|
248 |
+
|
249 |
+
if always_never_conflicts != 'ignore':
|
250 |
+
|
251 |
+
# Find conflicts between never_match and always_match groups
|
252 |
+
conflicts = []
|
253 |
+
for i,g in enumerate(never_match):
|
254 |
+
g = sorted(list(g))
|
255 |
+
g_labels = [always_match_labels.get(s,s) for s in g]
|
256 |
+
if len(set(g_labels)) < len(g):
|
257 |
+
df = (pd.DataFrame()
|
258 |
+
.assign(
|
259 |
+
string=g,
|
260 |
+
never_match_group=i,
|
261 |
+
always_match_group=g_labels
|
262 |
+
))
|
263 |
+
conflicts.append(df)
|
264 |
+
|
265 |
+
if conflicts:
|
266 |
+
conflicts_df = pd.concat(conflicts)
|
267 |
+
|
268 |
+
if always_never_conflicts == 'warn':
|
269 |
+
print(f'Warning: The following never_match groups are in conflict with always_match groups:\n{conflicts_df}')
|
270 |
+
print('Conflicted never_match relationships will be ignored')
|
271 |
+
else:
|
272 |
+
raise ValueError(f'The following never_match groups are in conflict with always_match groups\n{conflicts_df}')
|
273 |
+
|
274 |
+
|
275 |
+
# If always_match, collapse to group labels that should not match
|
276 |
+
# Note: Implicitly letting always_match over-ride never_match here
|
277 |
+
never_match = [{always_match_labels[s] for s in g if s in always_match_labels} for g in never_match]
|
278 |
+
|
279 |
+
else:
|
280 |
+
# Otherwise just use the strings themselves as labels
|
281 |
+
never_match = [set(s) for s in never_match]
|
282 |
+
|
283 |
+
# Convert thresholds from scores to raw cosine distances
|
284 |
+
V = self.V
|
285 |
+
cos_threshold = self.score_model.score_to_cos(threshold)
|
286 |
+
if group_threshold is not None:
|
287 |
+
separate_cos = self.score_model.score_to_cos(group_threshold)
|
288 |
+
|
289 |
+
# First collect all pairs to match (can be memory intensive!)
|
290 |
+
matches = []
|
291 |
+
cos_scores = []
|
292 |
+
for batch_start in tqdm(range(0,len(self),batch_size),
|
293 |
+
desc='Scoring pairs',
|
294 |
+
delay=1,disable=not progress_bar):
|
295 |
+
|
296 |
+
i_slice = slice(batch_start,batch_start+batch_size)
|
297 |
+
j_slice = slice(batch_start+1,None)
|
298 |
+
|
299 |
+
# Find j's with jaccard > threshold ("matches")
|
300 |
+
batch_cos = V[i_slice]@V[j_slice].T
|
301 |
+
|
302 |
+
# Search upper diagonal entries only
|
303 |
+
# (note j_slice starting index is offset by one)
|
304 |
+
batch_cos = torch.triu(batch_cos)
|
305 |
+
|
306 |
+
bi,bj = torch.nonzero(batch_cos >= cos_threshold,as_tuple=True)
|
307 |
+
|
308 |
+
if len(bi):
|
309 |
+
# Convert batch index locations to global index locations
|
310 |
+
i = bi + batch_start
|
311 |
+
j = bj + batch_start + 1
|
312 |
+
|
313 |
+
cos = batch_cos[bi,bj]
|
314 |
+
|
315 |
+
# Can skip strings that are already matched in the base grouping
|
316 |
+
unmatched = group_ids[i] != group_ids[j]
|
317 |
+
i = i[unmatched]
|
318 |
+
j = j[unmatched]
|
319 |
+
cos = cos[unmatched]
|
320 |
+
|
321 |
+
if len(i):
|
322 |
+
batch_matches = torch.hstack([i[:,None],j[:,None]])
|
323 |
+
|
324 |
+
matches.append(batch_matches.to('cpu').numpy())
|
325 |
+
cos_scores.append(cos.to('cpu').numpy())
|
326 |
+
|
327 |
+
# Unite potential match pairs in priority order, while respecting
|
328 |
+
# the group_threshold and never_match arguments
|
329 |
+
united = []
|
330 |
+
if matches:
|
331 |
+
matches = np.vstack(matches)
|
332 |
+
cos_scores = np.hstack(cos_scores).T
|
333 |
+
|
334 |
+
# Sort matches in descending order of score
|
335 |
+
m_sort = cos_scores.argsort()[::-1]
|
336 |
+
matches = matches[m_sort]
|
337 |
+
|
338 |
+
if return_united:
|
339 |
+
# Save cos scores for later return
|
340 |
+
cos_scores_df = pd.DataFrame(matches,columns=['i','j'])
|
341 |
+
cos_scores_df['cos'] = cos_scores[m_sort]
|
342 |
+
|
343 |
+
# Set up tensors
|
344 |
+
matches = torch.tensor(matches).to(self.device)
|
345 |
+
|
346 |
+
# Set-up per-string tracking of never-match relationships
|
347 |
+
if never_match is not None:
|
348 |
+
never_match_map = {s:sep for sep in never_match for s in sep}
|
349 |
+
|
350 |
+
if always_match is not None:
|
351 |
+
# If always_match, we use group labels instead of the strings themselves
|
352 |
+
never_match_array = np.array([never_match_map.get(always_match_labels[s],set()) for s in self.strings])
|
353 |
+
else:
|
354 |
+
never_match_array = np.array([never_match_map.get(s,set()) for s in self.strings])
|
355 |
+
|
356 |
+
|
357 |
+
n_matches = matches.shape[0]
|
358 |
+
with tqdm(total=n_matches,desc='Uniting matches',
|
359 |
+
delay=1,disable=not progress_bar) as p_bar:
|
360 |
+
|
361 |
+
while len(matches):
|
362 |
+
|
363 |
+
# Select the current match pair and remove it from the queue
|
364 |
+
match_pair = matches[0]
|
365 |
+
matches = matches[1:]
|
366 |
+
|
367 |
+
# Get the groups of the current match pair
|
368 |
+
g = group_ids[match_pair]
|
369 |
+
g0 = group_ids == g[0]
|
370 |
+
g1 = group_ids == g[1]
|
371 |
+
|
372 |
+
# Identify which strings should be united
|
373 |
+
to_unite = g0 | g1
|
374 |
+
|
375 |
+
# Flag whether the new group will have three or more strings
|
376 |
+
singletons = to_unite.sum() < 3
|
377 |
+
|
378 |
+
# Start by asuming that we can match this pair
|
379 |
+
unite_ok = True
|
380 |
+
|
381 |
+
# Check whether uniting this pair will unite any never_match strings/labels
|
382 |
+
if never_match is not None:
|
383 |
+
never_0 = never_match_array[match_pair[0]]
|
384 |
+
never_1 = never_match_array[match_pair[1]]
|
385 |
+
|
386 |
+
if never_0 and never_1 and (never_0 & never_1):
|
387 |
+
# Here we make use of the fact that any pair of never_match strings/labels
|
388 |
+
# will appear in both never_0 and never_1 if one string/label is in each group
|
389 |
+
unite_ok = False
|
390 |
+
|
391 |
+
# Check whether the uniting the pair will violate the group_threshold
|
392 |
+
# (impossible if the strings are singletons)
|
393 |
+
if unite_ok and group_threshold and not singletons:
|
394 |
+
V0 = V[g0,:]
|
395 |
+
V1 = V[g1,:]
|
396 |
+
|
397 |
+
unite_ok = (V0@V1.T).min() >= separate_cos
|
398 |
+
|
399 |
+
|
400 |
+
if unite_ok:
|
401 |
+
|
402 |
+
# Unite groups
|
403 |
+
group_ids[to_unite] = g[0]
|
404 |
+
|
405 |
+
if never_match and (never_0 or never_1):
|
406 |
+
# Propagate never_match information to the whole group
|
407 |
+
never_match_array[to_unite.detach().cpu().numpy()] = never_0 | never_1
|
408 |
+
|
409 |
+
# If we are uniting more than two strings, we can eliminate
|
410 |
+
# some redundant matches in the queue
|
411 |
+
if not singletons:
|
412 |
+
# Removed queued matches that are now in the same group
|
413 |
+
matches = matches[group_ids[matches[:,0]] != group_ids[matches[:,1]]]
|
414 |
+
|
415 |
+
if return_united:
|
416 |
+
match_record = np.empty(4,dtype=int)
|
417 |
+
match_record[:2] = match_pair.cpu().numpy().ravel()
|
418 |
+
match_record[2] = self.counts[g0].sum().item()
|
419 |
+
match_record[3] = self.counts[g1].sum().item()
|
420 |
+
|
421 |
+
united.append(match_record)
|
422 |
+
else:
|
423 |
+
# Remove queued matches connecting these groups
|
424 |
+
matches = matches[torch.isin(group_ids[matches[:,0]],g,invert=True) \
|
425 |
+
| torch.isin(group_ids[matches[:,1]],g,invert=True)]
|
426 |
+
|
427 |
+
# Update progress bar
|
428 |
+
p_bar.update(n_matches - matches.shape[0])
|
429 |
+
n_matches = matches.shape[0]
|
430 |
+
|
431 |
+
predicted_grouping = self.ids_to_group(group_ids)
|
432 |
+
|
433 |
+
if always_match is not None:
|
434 |
+
predicted_grouping = predicted_grouping.unite(always_grouping)
|
435 |
+
|
436 |
+
if return_united:
|
437 |
+
united_df = pd.DataFrame(np.vstack(united),columns=['i','j','n_i','n_j'])
|
438 |
+
united_df = pd.merge(united_df,cos_scores_df,how='inner',on=['i','j'])
|
439 |
+
united_df['score'] = self.score_model(
|
440 |
+
torch.tensor(united_df['cos'].values).to(self.device)
|
441 |
+
).cpu().numpy()
|
442 |
+
|
443 |
+
united_df = united_df.drop('cos',axis=1)
|
444 |
+
|
445 |
+
for c in ['i','j']:
|
446 |
+
united_df[c] = [self.strings[i] for i in united_df[c]]
|
447 |
+
|
448 |
+
if always_match is not None:
|
449 |
+
united_df['always_match'] = [always_grouping[i] == always_grouping[j]
|
450 |
+
for i,j in united_df[['i','j']].values]
|
451 |
+
|
452 |
+
return predicted_grouping,united_df
|
453 |
+
|
454 |
+
else:
|
455 |
+
|
456 |
+
return predicted_grouping
|
457 |
+
|
458 |
+
@torch.no_grad()
|
459 |
+
def unite_nearest(self,target_strings,threshold=0,always_grouping=None,progress_bar=True,batch_size=64):
|
460 |
+
"""
|
461 |
+
Unite embedding strings with each string's most similar target string.
|
462 |
+
|
463 |
+
- "always_grouping" will be used to inialize the group_ids before uniting new matches
|
464 |
+
- "theshold" sets the minimimum match similarity required between a string and target string
|
465 |
+
for the string to be matched. (i.e., setting theshold=0 will result in every embedding
|
466 |
+
string to be matched its nearest target string, while setting threshold=0.9 will leave
|
467 |
+
strings that have similarity<0.9 with their nearest target string unaffected)
|
468 |
+
|
469 |
+
returns: MatchGroups object
|
470 |
+
"""
|
471 |
+
|
472 |
+
if always_grouping is not None:
|
473 |
+
# self = self.embed(always_grouping)
|
474 |
+
group_ids = self._group_to_ids(always_grouping)
|
475 |
+
else:
|
476 |
+
group_ids = torch.arange(len(self)).to(self.device)
|
477 |
+
|
478 |
+
V = self.V
|
479 |
+
cos_threshold = self.score_model.score_to_cos(threshold)
|
480 |
+
|
481 |
+
seed_ids = torch.tensor([self.string_map[s] for s in target_strings]).to(self.device)
|
482 |
+
V_seed = V[seed_ids]
|
483 |
+
g_seed = group_ids[seed_ids]
|
484 |
+
is_seed = torch.zeros(V.shape[0],dtype=torch.bool).to(self.device)
|
485 |
+
is_seed[g_seed] = True
|
486 |
+
|
487 |
+
for batch_start in tqdm(range(0,len(self),batch_size),
|
488 |
+
delay=1,desc='Predicting matches',disable=not progress_bar):
|
489 |
+
|
490 |
+
batch_slice = slice(batch_start,batch_start+batch_size)
|
491 |
+
|
492 |
+
batch_cos = V[batch_slice]@V_seed.T
|
493 |
+
|
494 |
+
max_cos,max_seed = torch.max(batch_cos,dim=1)
|
495 |
+
|
496 |
+
# Get batch index locations where score > threshold
|
497 |
+
batch_i = torch.nonzero(max_cos > cos_threshold)
|
498 |
+
|
499 |
+
if len(batch_i):
|
500 |
+
# Drop target strings from matches (otherwise numerical precision
|
501 |
+
# issues can allow target strings to match to other strings)
|
502 |
+
batch_i = batch_i[~is_seed[batch_slice][batch_i]]
|
503 |
+
|
504 |
+
if len(batch_i):
|
505 |
+
# Get indices of matched strings
|
506 |
+
i = batch_i + batch_start
|
507 |
+
|
508 |
+
# Assign matched strings to the target string's group
|
509 |
+
group_ids[i] = g_seed[max_seed[batch_i]]
|
510 |
+
|
511 |
+
return self._ids_to_group(group_ids)
|
512 |
+
|
513 |
+
@torch.no_grad()
|
514 |
+
def score_pairs(self,string_pairs,batch_size=64,progress_bar=True):
|
515 |
+
string_pairs = np.array(string_pairs)
|
516 |
+
|
517 |
+
scores = []
|
518 |
+
for batch_start in tqdm(range(0,string_pairs.shape[0],batch_size),desc='Scoring pairs',disable=not progress_bar):
|
519 |
+
|
520 |
+
V0 = self[string_pairs[batch_start:batch_start+batch_size,0]].V
|
521 |
+
V1 = self[string_pairs[batch_start:batch_start+batch_size,1]].V
|
522 |
+
|
523 |
+
batch_cos = (V0*V1).sum(dim=1).ravel()
|
524 |
+
batch_scores = self.score_model(batch_cos)
|
525 |
+
|
526 |
+
scores.append(batch_scores.cpu().numpy())
|
527 |
+
|
528 |
+
return np.concatenate(scores)
|
529 |
+
|
530 |
+
@torch.no_grad()
|
531 |
+
def _batch_scores(self,group_ids,batch_start,batch_size,
|
532 |
+
is_match=None,
|
533 |
+
min_score=None,max_score=None,
|
534 |
+
min_loss=None,max_loss=None):
|
535 |
+
|
536 |
+
strings = self.strings
|
537 |
+
V = self.V
|
538 |
+
w = self.w
|
539 |
+
|
540 |
+
# Create simple slice objects to avoid creating copies with advanced indexing
|
541 |
+
i_slice = slice(batch_start,batch_start+batch_size)
|
542 |
+
j_slice = slice(batch_start+1,None)
|
543 |
+
|
544 |
+
X = V[i_slice]@V[j_slice].T
|
545 |
+
Y = (group_ids[i_slice,None] == group_ids[None,j_slice]).float()
|
546 |
+
if w is not None:
|
547 |
+
W = w[i_slice,None]*w[None,j_slice]
|
548 |
+
else:
|
549 |
+
W = None
|
550 |
+
|
551 |
+
scores = self.score_model(X)
|
552 |
+
loss = self.score_model.loss(X,Y,weights=W)
|
553 |
+
|
554 |
+
# Search upper diagonal entries only
|
555 |
+
# (note j_slice starting index is offset by one)
|
556 |
+
scores = torch.triu(scores)
|
557 |
+
|
558 |
+
# Filter by match type
|
559 |
+
if is_match is not None:
|
560 |
+
if is_match:
|
561 |
+
scores *= Y
|
562 |
+
else:
|
563 |
+
scores *= (1 - Y)
|
564 |
+
|
565 |
+
# Filter by min score
|
566 |
+
if min_score is not None:
|
567 |
+
scores *= (scores >= min_score)
|
568 |
+
|
569 |
+
# Filter by max score
|
570 |
+
if max_score is not None:
|
571 |
+
scores *= (scores <= max_score)
|
572 |
+
|
573 |
+
# Filter by min loss
|
574 |
+
if min_loss is not None:
|
575 |
+
scores *= (loss >= min_loss)
|
576 |
+
|
577 |
+
# Filter by max loss
|
578 |
+
if max_loss is not None:
|
579 |
+
scores *= (loss <= max_loss)
|
580 |
+
|
581 |
+
# Collect scored pairs
|
582 |
+
i,j = torch.nonzero(scores,as_tuple=True)
|
583 |
+
|
584 |
+
pairs = np.hstack([
|
585 |
+
strings[i.cpu().numpy() + batch_start][:,None],
|
586 |
+
strings[j.cpu().numpy() + (batch_start + 1)][:,None]
|
587 |
+
])
|
588 |
+
|
589 |
+
pair_groups = np.hstack([
|
590 |
+
strings[group_ids[i + batch_start].cpu().numpy()][:,None],
|
591 |
+
strings[group_ids[j + (batch_start + 1)].cpu().numpy()][:,None]
|
592 |
+
])
|
593 |
+
|
594 |
+
pair_scores = scores[i,j].cpu().numpy()
|
595 |
+
pair_losses = loss[i,j].cpu().numpy()
|
596 |
+
|
597 |
+
return pairs,pair_groups,pair_scores,pair_losses
|
598 |
+
|
599 |
+
def iter_scores(self,grouping=None,batch_size=64,progress_bar=True,**kwargs):
|
600 |
+
|
601 |
+
if grouping is not None:
|
602 |
+
self = self.embed(grouping)
|
603 |
+
group_ids = self._group_to_ids(grouping)
|
604 |
+
else:
|
605 |
+
group_ids = torch.arange(len(self)).to(self.device)
|
606 |
+
|
607 |
+
for batch_start in tqdm(range(0,len(self),batch_size),desc='Scoring pairs',disable=not progress_bar):
|
608 |
+
pairs,pair_groups,scores,losses = self._batch_scored_pairs(self,group_ids,batch_start,batch_size,**kwargs)
|
609 |
+
for (s0,s1),(g0,g1),score,loss in zip(pairs,pair_groups,scores,losses):
|
610 |
+
yield {
|
611 |
+
'string0':s0,
|
612 |
+
'string1':s1,
|
613 |
+
'group0':g0,
|
614 |
+
'group1':g1,
|
615 |
+
'score':score,
|
616 |
+
'loss':loss,
|
617 |
+
}
|
618 |
+
|
619 |
+
|
620 |
+
def load_embeddings(f):
|
621 |
+
"""
|
622 |
+
Load embeddings from custom zipped archive format
|
623 |
+
"""
|
624 |
+
with ZipFile(f,'r') as zip:
|
625 |
+
score_model = pickle.loads(zip.read('score_model.pkl'))
|
626 |
+
weighting_function = pickle.loads(zip.read('weighting_function.pkl'))
|
627 |
+
strings_df = pd.read_csv(zip.open('strings.csv'),na_filter=False)
|
628 |
+
V = np.load(zip.open('V.npy'))
|
629 |
+
|
630 |
+
return Embeddings(
|
631 |
+
strings=strings_df['string'].values,
|
632 |
+
counts=torch.tensor(strings_df['count'].values),
|
633 |
+
score_model=score_model,
|
634 |
+
weighting_function=weighting_function,
|
635 |
+
V=torch.tensor(V)
|
636 |
+
)
|
637 |
+
|
match_groups.py
ADDED
@@ -0,0 +1,870 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from collections import Counter, defaultdict
|
4 |
+
from itertools import islice
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
import networkx as nx
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import matplotlib as mplt
|
10 |
+
|
11 |
+
MAX_STR = 50
|
12 |
+
|
13 |
+
|
14 |
+
class MatchGroups():
|
15 |
+
"""A class for grouping strings based on set membership. Supports splitting and uniting of groups."""
|
16 |
+
|
17 |
+
def __init__(self, strings=None):
|
18 |
+
"""
|
19 |
+
Initialize MatchGroups object.
|
20 |
+
|
21 |
+
Parameters
|
22 |
+
----------
|
23 |
+
strings : list, optional
|
24 |
+
List of strings to add to the match groups object, by default None
|
25 |
+
"""
|
26 |
+
self.counts = Counter()
|
27 |
+
self.labels = {}
|
28 |
+
self.groups = {}
|
29 |
+
|
30 |
+
if strings is not None:
|
31 |
+
self.add_strings(strings, inplace=True)
|
32 |
+
|
33 |
+
def __len__(self):
|
34 |
+
"""Return the number of strings in the match groups object."""
|
35 |
+
return len(self.labels)
|
36 |
+
|
37 |
+
def __repr__(self):
|
38 |
+
"""Return a string representation of the MatchGroups object."""
|
39 |
+
return f'<nama.MatchGroups containing {len(self)} strings in {len(self.groups)} groups>'
|
40 |
+
|
41 |
+
def __str__(self):
|
42 |
+
"""Return a string representation of the groups of a MatchGroups object."""
|
43 |
+
output = self.__repr__()
|
44 |
+
remaining = MAX_STR
|
45 |
+
for group in self.groups.values():
|
46 |
+
for s in group:
|
47 |
+
if remaining:
|
48 |
+
output += '\n' + s
|
49 |
+
remaining -= 1
|
50 |
+
else:
|
51 |
+
output += f'...\n(Output truncated at {MAX_STR} strings)'
|
52 |
+
return output
|
53 |
+
|
54 |
+
output += '\n'
|
55 |
+
|
56 |
+
return output
|
57 |
+
|
58 |
+
def __contains__(self, s):
|
59 |
+
"""Return True if string is in the match groups object, False otherwise."""
|
60 |
+
return s in self.labels
|
61 |
+
|
62 |
+
def __getitem__(self, strings):
|
63 |
+
"""Return the group label for a single string or a list of strings."""
|
64 |
+
if isinstance(strings, str):
|
65 |
+
return self.labels[strings]
|
66 |
+
else:
|
67 |
+
return [self.labels[s] for s in strings]
|
68 |
+
|
69 |
+
def __add__(self, match_obj):
|
70 |
+
"""Add two match groups objects together and return the result."""
|
71 |
+
result = self.add_strings(match_obj)
|
72 |
+
result.unite(match_obj, inplace=True)
|
73 |
+
|
74 |
+
return result
|
75 |
+
|
76 |
+
def items(self):
|
77 |
+
"""Return an iterator of strings and their group labels."""
|
78 |
+
for i, g in self.labels.items():
|
79 |
+
yield i, g
|
80 |
+
|
81 |
+
def copy(self):
|
82 |
+
"""Return a copy of the MatchGroups object."""
|
83 |
+
new_match_obj = MatchGroups()
|
84 |
+
new_match_obj.counts = self.counts.copy()
|
85 |
+
new_match_obj.labels = self.labels.copy()
|
86 |
+
new_match_obj.groups = self.groups.copy()
|
87 |
+
|
88 |
+
return new_match_obj
|
89 |
+
|
90 |
+
def strings(self):
|
91 |
+
"""Return a list of strings in the match groups object. Order is not guaranteed."""
|
92 |
+
return list(self.labels.keys())
|
93 |
+
|
94 |
+
def matches(self, string):
|
95 |
+
"""Return the group of strings that match the given string."""
|
96 |
+
return self.groups[self.labels[string]]
|
97 |
+
|
98 |
+
def add_strings(self, arg, inplace=False):
|
99 |
+
"""Add new strings to the match groups object.
|
100 |
+
|
101 |
+
Parameters
|
102 |
+
----------
|
103 |
+
arg : str, Counter, MatchGroups, Iterable
|
104 |
+
String or group of strings to add to the match groups object
|
105 |
+
inplace : bool, optional
|
106 |
+
If True, add strings to the existing MatchGroups object, by default False
|
107 |
+
|
108 |
+
Returns
|
109 |
+
-------
|
110 |
+
MatchGroups
|
111 |
+
The updated MatchGroups object
|
112 |
+
"""
|
113 |
+
if isinstance(arg, str):
|
114 |
+
counts = {arg: 1}
|
115 |
+
|
116 |
+
elif isinstance(arg, Counter):
|
117 |
+
counts = arg
|
118 |
+
|
119 |
+
elif isinstance(arg, MatchGroups):
|
120 |
+
counts = arg.counts
|
121 |
+
|
122 |
+
elif hasattr(arg, '__next__') or hasattr(arg, '__iter__'):
|
123 |
+
counts = Counter(arg)
|
124 |
+
|
125 |
+
if not inplace:
|
126 |
+
self = self.copy()
|
127 |
+
|
128 |
+
for s in counts.keys():
|
129 |
+
if s not in self.labels:
|
130 |
+
self.labels[s] = s
|
131 |
+
self.groups[s] = [s]
|
132 |
+
|
133 |
+
self.counts += counts
|
134 |
+
|
135 |
+
return self
|
136 |
+
|
137 |
+
def drop(self, strings, inplace=False):
|
138 |
+
"""Remove strings from the match groups object.
|
139 |
+
|
140 |
+
Parameters
|
141 |
+
----------
|
142 |
+
strings : list or str
|
143 |
+
String or list of strings to remove from the match groups object
|
144 |
+
inplace : bool, optional
|
145 |
+
If True, remove strings from the existing MatchGroups object, by default False
|
146 |
+
|
147 |
+
Returns
|
148 |
+
-------
|
149 |
+
MatchGroups
|
150 |
+
The updated MatchGroups object
|
151 |
+
"""
|
152 |
+
if isinstance(strings, str):
|
153 |
+
strings = [strings]
|
154 |
+
|
155 |
+
strings = set(strings)
|
156 |
+
|
157 |
+
if not inplace:
|
158 |
+
self = self.copy()
|
159 |
+
|
160 |
+
# Remove strings from their groups
|
161 |
+
affected_group_labels = {self[s] for s in strings}
|
162 |
+
for old_label in affected_group_labels:
|
163 |
+
old_group = self.groups[old_label]
|
164 |
+
new_group = [s for s in old_group if s not in strings]
|
165 |
+
|
166 |
+
if new_group:
|
167 |
+
counts = self.counts
|
168 |
+
new_label = min((-counts[s], s) for s in new_group)[1]
|
169 |
+
|
170 |
+
if new_label != old_label:
|
171 |
+
del self.groups[old_label]
|
172 |
+
|
173 |
+
self.groups[new_label] = new_group
|
174 |
+
|
175 |
+
for s in new_group:
|
176 |
+
self.labels[s] = new_label
|
177 |
+
else:
|
178 |
+
del self.groups[old_label]
|
179 |
+
|
180 |
+
# Remove strings from counts and labels
|
181 |
+
for s in strings:
|
182 |
+
del self.counts[s]
|
183 |
+
del self.labels[s]
|
184 |
+
|
185 |
+
return self
|
186 |
+
|
187 |
+
def keep(self, strings, inplace=False):
|
188 |
+
"""Drop all strings from the match groups object except the passed strings.
|
189 |
+
|
190 |
+
Parameters
|
191 |
+
----------
|
192 |
+
strings : list
|
193 |
+
List of strings to keep in the match groups object
|
194 |
+
inplace : bool, optional
|
195 |
+
If True, drop strings from the existing MatchGroups object, by default False
|
196 |
+
|
197 |
+
Returns
|
198 |
+
-------
|
199 |
+
MatchGroups
|
200 |
+
The updated MatchGroups object
|
201 |
+
"""
|
202 |
+
strings = set(strings)
|
203 |
+
|
204 |
+
to_drop = [s for s in self.strings() if s not in strings]
|
205 |
+
|
206 |
+
return self.drop(to_drop, inplace=inplace)
|
207 |
+
|
208 |
+
def _unite_strings(self, strings):
|
209 |
+
"""
|
210 |
+
Unite strings in the match groups object without checking argument type.
|
211 |
+
Intended as a low-level function called by self.unite()
|
212 |
+
|
213 |
+
Parameters
|
214 |
+
----------
|
215 |
+
strings : list
|
216 |
+
List of strings to unite in the match groups object
|
217 |
+
|
218 |
+
Returns
|
219 |
+
-------
|
220 |
+
None
|
221 |
+
"""
|
222 |
+
strings = {s for s in strings if s in self.labels}
|
223 |
+
|
224 |
+
if len(strings) > 1:
|
225 |
+
|
226 |
+
# Identify groups that will be united
|
227 |
+
old_labels = set(self[strings])
|
228 |
+
|
229 |
+
# Only need to do the merge if the strings span multiple groups
|
230 |
+
if len(old_labels) > 1:
|
231 |
+
|
232 |
+
# Identify the new group label
|
233 |
+
counts = self.counts
|
234 |
+
new_label = min((-counts[s], s) for s in old_labels)[1]
|
235 |
+
|
236 |
+
# Identify the groups which need to be modified
|
237 |
+
old_labels.remove(new_label)
|
238 |
+
|
239 |
+
for old_label in old_labels:
|
240 |
+
# Update the string group labels
|
241 |
+
for s in self.groups[old_label]:
|
242 |
+
self.labels[s] = new_label
|
243 |
+
|
244 |
+
# Update group dict
|
245 |
+
self.groups[new_label] = self.groups[new_label] + \
|
246 |
+
self.groups[old_label]
|
247 |
+
del self.groups[old_label]
|
248 |
+
|
249 |
+
def unite(self, arg, inplace=False, **kwargs):
|
250 |
+
"""
|
251 |
+
Merge groups containing the passed strings. Groups can be passed as:
|
252 |
+
- A list of strings to unite
|
253 |
+
- A nested list to unite each set of strings
|
254 |
+
- A dictionary mapping strings to labels to unite by label
|
255 |
+
- A function mapping strings to labels to unite by label
|
256 |
+
- A MatchGroups instance to unite by MatchGroups groups
|
257 |
+
|
258 |
+
Parameters
|
259 |
+
----------
|
260 |
+
arg : list, dict, function or MatchGroups instance
|
261 |
+
Argument representing the strings or labels to merge.
|
262 |
+
inplace : bool, optional
|
263 |
+
Whether to perform the operation in place or return a new MatchGroups.
|
264 |
+
kwargs : dict, optional
|
265 |
+
Additional arguments to be passed to predict_groupings method if arg
|
266 |
+
is a similarity model with a predict_groupings method.
|
267 |
+
|
268 |
+
Returns
|
269 |
+
-------
|
270 |
+
MatchGroups
|
271 |
+
The updated MatchGroups object. If `inplace` is True, the updated object
|
272 |
+
is returned, else a new MatchGroups object with the updates is returned.
|
273 |
+
"""
|
274 |
+
|
275 |
+
if not inplace:
|
276 |
+
self = self.copy()
|
277 |
+
|
278 |
+
if isinstance(arg, str):
|
279 |
+
raise ValueError('Cannot unite a single string')
|
280 |
+
|
281 |
+
elif isinstance(arg, MatchGroups):
|
282 |
+
self.unite(arg.groups.values(), inplace=True)
|
283 |
+
|
284 |
+
elif hasattr(arg, 'unite_similar'):
|
285 |
+
# Unite can accept a similarity model if it has a unite_similar
|
286 |
+
# method
|
287 |
+
self.unite(arg.unite_similar(self, **kwargs))
|
288 |
+
|
289 |
+
elif callable(arg):
|
290 |
+
# Assume arg is a mapping from strings to labels and unite by label
|
291 |
+
groups = {s: arg(s) for s in self.strings()}
|
292 |
+
self.unite(groups, inplace=True)
|
293 |
+
|
294 |
+
elif isinstance(arg, dict):
|
295 |
+
# Assume arg is a mapping from strings to labels and unite by label
|
296 |
+
# groups = {label:[] for label in arg.values()}
|
297 |
+
groups = defaultdict(list)
|
298 |
+
for string, label in arg.items():
|
299 |
+
groups[label].append(string)
|
300 |
+
|
301 |
+
for group in groups.values():
|
302 |
+
self._unite_strings(group)
|
303 |
+
|
304 |
+
elif hasattr(arg, '__next__'):
|
305 |
+
# Assume arg is an iterator of groups to unite
|
306 |
+
# (This needs to be checked early to avoid consuming the first group)
|
307 |
+
for group in arg:
|
308 |
+
self._unite_strings(group)
|
309 |
+
|
310 |
+
elif all(isinstance(s, str) for s in arg):
|
311 |
+
# Main case: Unite group of strings
|
312 |
+
self._unite_strings(arg)
|
313 |
+
|
314 |
+
elif hasattr(arg, '__iter__'):
|
315 |
+
# Assume arg is an iterable of groups to unite
|
316 |
+
for group in arg:
|
317 |
+
self._unite_strings(group)
|
318 |
+
|
319 |
+
else:
|
320 |
+
raise ValueError('Unknown input type')
|
321 |
+
|
322 |
+
if not inplace:
|
323 |
+
return self
|
324 |
+
|
325 |
+
def split(self, strings, inplace=False):
|
326 |
+
"""
|
327 |
+
Split strings into singleton groups. Strings can be passed as:
|
328 |
+
- A single string to isolate into a singleton group
|
329 |
+
- A list or iterator of strings to split
|
330 |
+
|
331 |
+
Parameters
|
332 |
+
----------
|
333 |
+
strings : str or list of str
|
334 |
+
The string(s) to split into singleton groups.
|
335 |
+
inplace : bool, optional
|
336 |
+
Whether to perform the operation in place or return a new MatchGroups.
|
337 |
+
|
338 |
+
Returns
|
339 |
+
-------
|
340 |
+
MatchGroups
|
341 |
+
The updated MatchGroups object. If `inplace` is True, the updated object
|
342 |
+
is returned, else a new MatchGroups object with the updates is returned.
|
343 |
+
"""
|
344 |
+
if not inplace:
|
345 |
+
self = self.copy()
|
346 |
+
|
347 |
+
if isinstance(strings, str):
|
348 |
+
strings = [strings]
|
349 |
+
|
350 |
+
strings = set(strings)
|
351 |
+
|
352 |
+
# Remove strings from their groups
|
353 |
+
affected_group_labels = {self[s] for s in strings}
|
354 |
+
for old_label in affected_group_labels:
|
355 |
+
old_group = self.groups[old_label]
|
356 |
+
if len(old_group) > 1:
|
357 |
+
new_group = [s for s in old_group if s not in strings]
|
358 |
+
if new_group:
|
359 |
+
counts = self.counts
|
360 |
+
new_label = min((-counts[s], s) for s in new_group)[1]
|
361 |
+
|
362 |
+
if new_label != old_label:
|
363 |
+
del self.groups[old_label]
|
364 |
+
|
365 |
+
self.groups[new_label] = new_group
|
366 |
+
|
367 |
+
for s in new_group:
|
368 |
+
self.labels[s] = new_label
|
369 |
+
|
370 |
+
# Update labels and add singleton groups
|
371 |
+
for s in strings:
|
372 |
+
self.labels[s] = s
|
373 |
+
self.groups[s] = [s]
|
374 |
+
|
375 |
+
return self
|
376 |
+
|
377 |
+
def split_all(self, inplace=False):
|
378 |
+
"""
|
379 |
+
Split all strings into singleton groups.
|
380 |
+
|
381 |
+
Parameters
|
382 |
+
----------
|
383 |
+
inplace : bool, optional
|
384 |
+
Whether to perform the operation in place or return a new MatchGroups.
|
385 |
+
|
386 |
+
Returns
|
387 |
+
-------
|
388 |
+
MatchGroups
|
389 |
+
The updated MatchGroups object. If `inplace` is True, the updated object
|
390 |
+
is returned, else a new MatchGroups object with the updates is returned.
|
391 |
+
"""
|
392 |
+
if not inplace:
|
393 |
+
self = self.copy()
|
394 |
+
|
395 |
+
self.labels = {s: s for s in self.strings()}
|
396 |
+
self.groups = {s: [s] for s in self.strings()}
|
397 |
+
|
398 |
+
return self
|
399 |
+
|
400 |
+
def separate(
|
401 |
+
self,
|
402 |
+
strings,
|
403 |
+
similarity_model,
|
404 |
+
inplace=False,
|
405 |
+
threshold=0,
|
406 |
+
**kwargs):
|
407 |
+
"""
|
408 |
+
Separate the strings in according to the prediction of the similarity_model.
|
409 |
+
|
410 |
+
Parameters
|
411 |
+
----------
|
412 |
+
strings: list
|
413 |
+
List of strings to be separated.
|
414 |
+
similarity_model: Model
|
415 |
+
Model used to predict similarity between strings.
|
416 |
+
inplace: bool, optional
|
417 |
+
If True, the separation operation is performed in-place. Otherwise, a copy is created.
|
418 |
+
threshold: float, optional
|
419 |
+
Threshold value for prediction.
|
420 |
+
kwargs: dict, optional
|
421 |
+
Additional keyword arguments passed to the prediction function.
|
422 |
+
|
423 |
+
Returns
|
424 |
+
-------
|
425 |
+
self: MatchGroups
|
426 |
+
Returns the MatchGroups object after the separation operation.
|
427 |
+
|
428 |
+
"""
|
429 |
+
if not inplace:
|
430 |
+
self = self.copy()
|
431 |
+
|
432 |
+
# Identify which groups contain the strings to separate
|
433 |
+
group_map = defaultdict(list)
|
434 |
+
for s in set(strings):
|
435 |
+
group_map[self[s]].append(s)
|
436 |
+
|
437 |
+
for g, g_sep in group_map.items():
|
438 |
+
|
439 |
+
# If group contains strings to separate...
|
440 |
+
if len(g_sep) > 1:
|
441 |
+
group_strings = self.groups[g]
|
442 |
+
|
443 |
+
# Split the group strings
|
444 |
+
self.split(group_strings, inplace=True)
|
445 |
+
|
446 |
+
# Re-unite with new prediction that enforces separation
|
447 |
+
try:
|
448 |
+
embeddings = similarity_model[group_strings]
|
449 |
+
except Exception as e:
|
450 |
+
print(f'{g=} {g_sep} {group_strings}')
|
451 |
+
raise e
|
452 |
+
predicted = embeddings.predict(
|
453 |
+
threshold=threshold,
|
454 |
+
separate_strings=strings,
|
455 |
+
**kwargs)
|
456 |
+
|
457 |
+
self.unite(predicted, inplace=True)
|
458 |
+
|
459 |
+
return self
|
460 |
+
|
461 |
+
# def refine(self,similarity_model)
|
462 |
+
|
463 |
+
def top_scored_pairs_df(self, similarity_model,
|
464 |
+
n=10000, buffer_n=100000,
|
465 |
+
by_group=True,
|
466 |
+
sort_by=['impact', 'score'], ascending=False,
|
467 |
+
skip_pairs=None, **kwargs):
|
468 |
+
"""
|
469 |
+
Return the DataFrame containing the n most important pairs of strings, according to the score generated by the `similarity_model`.
|
470 |
+
|
471 |
+
Parameters
|
472 |
+
----------
|
473 |
+
similarity_model: Model
|
474 |
+
Model used to predict similarity between strings.
|
475 |
+
n: int, optional
|
476 |
+
Number of most important pairs to return. Default is 10000.
|
477 |
+
buffer_n: int, optional
|
478 |
+
Size of buffer to iterate through the scored pairs. Default is 100000.
|
479 |
+
by_group: bool, optional
|
480 |
+
If True, only the most important pair will be returned for each unique group combination.
|
481 |
+
sort_by: list, optional
|
482 |
+
A list of column names by which to sort the dataframe. Default is ['impact','score'].
|
483 |
+
ascending: bool, optional
|
484 |
+
Whether the sort order should be ascending or descending. Default is False.
|
485 |
+
skip_pairs: list, optional
|
486 |
+
List of string pairs to ignore when constructing the ranking.
|
487 |
+
If by_group=True, any group combination represented in the skip_pairs list will be ignored
|
488 |
+
kwargs: dict, optional
|
489 |
+
Additional keyword arguments passed to the `iter_scored_pairs` function.
|
490 |
+
|
491 |
+
Returns
|
492 |
+
-------
|
493 |
+
top_df: pandas.DataFrame
|
494 |
+
The DataFrame containing the n most important pairs of strings.
|
495 |
+
|
496 |
+
"""
|
497 |
+
|
498 |
+
top_df = pd.DataFrame(
|
499 |
+
columns=[
|
500 |
+
'string0',
|
501 |
+
'string1',
|
502 |
+
'group0',
|
503 |
+
'group1',
|
504 |
+
'impact',
|
505 |
+
'score',
|
506 |
+
'loss'])
|
507 |
+
pair_iterator = similarity_model.iter_scored_pairs(self, **kwargs)
|
508 |
+
|
509 |
+
def group_size(g):
|
510 |
+
return len(self.groups[g])
|
511 |
+
|
512 |
+
if skip_pairs is not None:
|
513 |
+
if by_group:
|
514 |
+
skip_pairs = {tuple(sorted([self[s0], self[s1]]))
|
515 |
+
for s0, s1 in skip_pairs}
|
516 |
+
else:
|
517 |
+
skip_pairs = {tuple(sorted([s0, s1])) for s0, s1 in skip_pairs}
|
518 |
+
|
519 |
+
while True:
|
520 |
+
df = pd.DataFrame(islice(pair_iterator, buffer_n))
|
521 |
+
|
522 |
+
if len(df):
|
523 |
+
for i in 0, 1:
|
524 |
+
df[f'group{i}'] = [self[s] for s in df[f'string{i}']]
|
525 |
+
df['impact'] = df['group0'].apply(
|
526 |
+
group_size) * df['group1'].apply(group_size)
|
527 |
+
|
528 |
+
if by_group:
|
529 |
+
df['group_pair'] = [tuple(sorted([g0, g1])) for g0, g1 in df[[
|
530 |
+
'group0', 'group1']].values]
|
531 |
+
|
532 |
+
if skip_pairs:
|
533 |
+
if by_group:
|
534 |
+
df = df[~df['group_pair'].isin(skip_pairs)]
|
535 |
+
else:
|
536 |
+
string_pairs = [tuple(sorted([s0, s1])) for s0, s1 in df[[
|
537 |
+
'string0', 'string1']].values]
|
538 |
+
df = df[~string_pairs.isin(skip_pairs)]
|
539 |
+
|
540 |
+
if len(df):
|
541 |
+
top_df = pd.concat([top_df, df]) \
|
542 |
+
.sort_values(sort_by, ascending=ascending)
|
543 |
+
|
544 |
+
if by_group:
|
545 |
+
top_df = top_df \
|
546 |
+
.groupby('group_pair') \
|
547 |
+
.first() \
|
548 |
+
.reset_index()
|
549 |
+
|
550 |
+
top_df = top_df \
|
551 |
+
.sort_values(sort_by, ascending=ascending) \
|
552 |
+
.head(n)
|
553 |
+
else:
|
554 |
+
break
|
555 |
+
|
556 |
+
if len(top_df) and by_group:
|
557 |
+
top_df = top_df \
|
558 |
+
.drop('group_pair', axis=1) \
|
559 |
+
.reset_index()
|
560 |
+
|
561 |
+
return top_df
|
562 |
+
|
563 |
+
def reset_counts(self, inplace=False):
|
564 |
+
"""
|
565 |
+
Reset the counts of strings in the MatchGroups object.
|
566 |
+
|
567 |
+
Parameters
|
568 |
+
----------
|
569 |
+
inplace: bool, optional
|
570 |
+
If True, the operation is performed in-place. Otherwise, a copy is created.
|
571 |
+
|
572 |
+
Returns
|
573 |
+
-------
|
574 |
+
self: MatchGroups
|
575 |
+
Returns the MatchGroups object after the reset operation.
|
576 |
+
|
577 |
+
"""
|
578 |
+
if not inplace:
|
579 |
+
self = self.copy()
|
580 |
+
|
581 |
+
self.counts = Counter(self.strings())
|
582 |
+
|
583 |
+
return self
|
584 |
+
|
585 |
+
def to_df(self, singletons=True, sort_groups=True):
|
586 |
+
"""
|
587 |
+
Convert the match groups object to a dataframe with string, count and group columns.
|
588 |
+
|
589 |
+
Parameters
|
590 |
+
----------
|
591 |
+
singletons: bool, optional
|
592 |
+
If True, the resulting DataFrame will include singleton groups. Default is True.
|
593 |
+
...
|
594 |
+
|
595 |
+
Returns
|
596 |
+
-------
|
597 |
+
df: pandas.DataFrame
|
598 |
+
The resulting DataFrame.
|
599 |
+
"""
|
600 |
+
strings = self.strings()
|
601 |
+
|
602 |
+
if singletons:
|
603 |
+
df = pd.DataFrame([(s, self.counts[s], self.labels[s]) for s in strings],
|
604 |
+
columns=['string', 'count', 'group'])
|
605 |
+
else:
|
606 |
+
df = pd.DataFrame([(s, self.counts[s], self.labels[s]) for s in strings
|
607 |
+
if len(self.groups[self[s]]) > 1],
|
608 |
+
columns=['string', 'count', 'group'])
|
609 |
+
if sort_groups:
|
610 |
+
df['group_count'] = df.groupby('group')['count'].transform('sum')
|
611 |
+
df = df.sort_values(['group_count', 'group', 'count', 'string'], ascending=[
|
612 |
+
False, True, False, True])
|
613 |
+
df = df.drop('group_count', axis=1)
|
614 |
+
df = df.reset_index(drop=True)
|
615 |
+
|
616 |
+
return df
|
617 |
+
|
618 |
+
def to_csv(self, filename, singletons=True, **pandas_args):
|
619 |
+
"""
|
620 |
+
Save the match groups object as a csv file with string, count and group columns.
|
621 |
+
|
622 |
+
Parameters
|
623 |
+
----------
|
624 |
+
filename : str
|
625 |
+
Path to file to save the data.
|
626 |
+
singletons : bool, optional
|
627 |
+
If True, include singleton groups in the saved file, by default True.
|
628 |
+
pandas_args : dict
|
629 |
+
Additional keyword arguments to pass to the pandas.DataFrame.to_csv method.
|
630 |
+
"""
|
631 |
+
df = self.to_df(singletons=singletons)
|
632 |
+
df.to_csv(filename, index=False, **pandas_args)
|
633 |
+
|
634 |
+
def merge_dfs(self, left_df, right_df, how='inner',
|
635 |
+
on=None, left_on=None, right_on=None,
|
636 |
+
group_column_name='match_group', suffixes=('_x', '_y'),
|
637 |
+
**merge_args):
|
638 |
+
"""
|
639 |
+
Replicated pandas.merge() functionality, except that dataframes are merged by match group instead of directly on the strings in the "on" columns.
|
640 |
+
|
641 |
+
Parameters
|
642 |
+
----------
|
643 |
+
left_df : pandas.DataFrame
|
644 |
+
The left dataframe to merge.
|
645 |
+
right_df : pandas.DataFrame
|
646 |
+
The right dataframe to merge.
|
647 |
+
how : str, optional
|
648 |
+
How to merge the dataframes. Possible values are 'left', 'right', 'outer', 'inner', by default 'inner'.
|
649 |
+
on : str, optional
|
650 |
+
Columns in both left and right dataframes to merge on.
|
651 |
+
left_on : str, optional
|
652 |
+
Columns in the left dataframe to merge on.
|
653 |
+
right_on : str, optional
|
654 |
+
Columns in the right dataframe to merge on.
|
655 |
+
group_column_name : str, optional
|
656 |
+
Column name for the merged match group, by default 'match_group'.
|
657 |
+
suffixes : tuple of str, optional
|
658 |
+
Suffix to apply to overlapping column names in the left and right dataframes, by default ('_x','_y').
|
659 |
+
**merge_args : dict
|
660 |
+
Additional keyword arguments to pass to the pandas.DataFrame.merge method.
|
661 |
+
|
662 |
+
Returns
|
663 |
+
-------
|
664 |
+
pandas.DataFrame
|
665 |
+
The merged dataframe.
|
666 |
+
|
667 |
+
Raises
|
668 |
+
------
|
669 |
+
ValueError
|
670 |
+
If 'on', 'left_on', and 'right_on' are all None.
|
671 |
+
ValueError
|
672 |
+
If `group_column_name` already exists in one of the dataframes.
|
673 |
+
"""
|
674 |
+
|
675 |
+
if ((left_on is None) or (right_on is None)) and (on is None):
|
676 |
+
raise ValueError('Must provide column(s) to merge on')
|
677 |
+
|
678 |
+
left_df = left_df.copy()
|
679 |
+
right_df = right_df.copy()
|
680 |
+
|
681 |
+
if on is not None:
|
682 |
+
left_on = on + suffixes[0]
|
683 |
+
right_on = on + suffixes[1]
|
684 |
+
|
685 |
+
left_df = left_df.rename(columns={on:left_on})
|
686 |
+
right_df = right_df.rename(columns={on:right_on})
|
687 |
+
|
688 |
+
group_map = lambda s: self[s] if s in self.labels else np.nan
|
689 |
+
|
690 |
+
left_group = left_df[left_on].apply(group_map)
|
691 |
+
right_group = right_df[right_on].apply(group_map)
|
692 |
+
|
693 |
+
if group_column_name:
|
694 |
+
if group_column_name in list(left_df.columns) + list(right_df.columns):
|
695 |
+
raise ValueError('f{group_column_name=} already exists in one of the dataframes.')
|
696 |
+
else:
|
697 |
+
left_df[group_column_name] = left_group
|
698 |
+
|
699 |
+
merged_df = pd.merge(left_df,right_df,left_on=left_group,right_on=right_group,how=how,suffixes=suffixes,**merge_args)
|
700 |
+
|
701 |
+
merged_df = merged_df[[c for c in merged_df.columns if c in list(left_df.columns) + list(right_df.columns)]]
|
702 |
+
|
703 |
+
return merged_df
|
704 |
+
|
705 |
+
|
706 |
+
def from_df(
|
707 |
+
df,
|
708 |
+
match_format='detect',
|
709 |
+
pair_columns=[
|
710 |
+
'string0',
|
711 |
+
'string1'],
|
712 |
+
string_column='string',
|
713 |
+
group_column='group',
|
714 |
+
count_column='count'):
|
715 |
+
"""
|
716 |
+
Construct a new match groups object from a pandas DataFrame.
|
717 |
+
|
718 |
+
Parameters
|
719 |
+
----------
|
720 |
+
df : pandas.DataFrame
|
721 |
+
The input dataframe.
|
722 |
+
match_format : str, optional
|
723 |
+
The format of the dataframe, by default "detect".
|
724 |
+
It can be one of ['unmatched', 'groups', 'pairs', 'detect'].
|
725 |
+
pair_columns : list of str, optional
|
726 |
+
The columns names containing the string pairs, by default ['string0','string1'].
|
727 |
+
string_column : str, optional
|
728 |
+
The column name containing the strings, by default 'string'.
|
729 |
+
group_column : str, optional
|
730 |
+
The column name containing the groups, by default 'group'.
|
731 |
+
count_column : str, optional
|
732 |
+
The column name containing the counts, by default 'count'.
|
733 |
+
|
734 |
+
Returns
|
735 |
+
-------
|
736 |
+
MatchGroups
|
737 |
+
The constructed MatchGroups object.
|
738 |
+
|
739 |
+
Raises
|
740 |
+
------
|
741 |
+
ValueError
|
742 |
+
If the input `match_format` is not one of ['unmatched', 'groups', 'pairs', 'detect'].
|
743 |
+
ValueError
|
744 |
+
If the `match_format` is 'detect' and the input dataframe format could not be inferred.
|
745 |
+
|
746 |
+
Notes
|
747 |
+
-----
|
748 |
+
The function accepts two formats of the input dataframe:
|
749 |
+
|
750 |
+
- "groups": The standard format for a match groups object dataframe. It includes a
|
751 |
+
string column, and a "group" column that contains group labels, and an
|
752 |
+
optional "count" column. These three columns completely describe a
|
753 |
+
match groups object, allowing lossless match groups object -> dataframe -> match groups object
|
754 |
+
conversion (though the specific group labels in the dataframe will be
|
755 |
+
ignored and rebuilt in the new match groups object).
|
756 |
+
|
757 |
+
- "pairs": The dataframe includes two string columns, and each row indicates
|
758 |
+
a link between a pair of strings. A new match groups object will be constructed by
|
759 |
+
uniting each pair of strings.
|
760 |
+
"""
|
761 |
+
|
762 |
+
if match_format not in ['unmatched', 'groups', 'pairs', 'detect']:
|
763 |
+
raise ValueError(
|
764 |
+
'match_format must be one of "unmatched", "groups", "pairs", or "detect"')
|
765 |
+
|
766 |
+
# Create an empty match groups object
|
767 |
+
match_obj = MatchGroups()
|
768 |
+
|
769 |
+
if match_format == 'detect':
|
770 |
+
if (string_column in df.columns):
|
771 |
+
if group_column is None:
|
772 |
+
match_format = 'unmatched'
|
773 |
+
elif (group_column in df.columns):
|
774 |
+
match_format = 'groups'
|
775 |
+
elif set(df.columns) == set(pair_columns):
|
776 |
+
match_format = 'pairs'
|
777 |
+
|
778 |
+
if match_format == 'detect':
|
779 |
+
raise ValueError('Could not infer valid dataframe format from input')
|
780 |
+
|
781 |
+
if count_column in df.columns:
|
782 |
+
counts = df[count_column].values
|
783 |
+
else:
|
784 |
+
counts = np.ones(len(df))
|
785 |
+
|
786 |
+
if match_format == 'unmatched':
|
787 |
+
strings = df[string_column].values
|
788 |
+
|
789 |
+
# Build the match groups object
|
790 |
+
match_obj.counts = Counter({s: int(c) for s, c in zip(strings, counts)})
|
791 |
+
match_obj.labels = {s: s for s in strings}
|
792 |
+
match_obj.groups = {s: [s] for s in strings}
|
793 |
+
|
794 |
+
elif match_format == 'groups':
|
795 |
+
|
796 |
+
strings = df[string_column].values
|
797 |
+
group_ids = df[group_column].values
|
798 |
+
|
799 |
+
# Sort by group and string count
|
800 |
+
g_sort = np.lexsort((counts, group_ids))
|
801 |
+
group_ids = group_ids[g_sort]
|
802 |
+
strings = strings[g_sort]
|
803 |
+
counts = counts[g_sort]
|
804 |
+
|
805 |
+
# Identify group boundaries and split locations
|
806 |
+
split_locs = np.nonzero(group_ids[1:] != group_ids[:-1])[0] + 1
|
807 |
+
|
808 |
+
# Get grouped strings as separate arrays
|
809 |
+
groups = np.split(strings, split_locs)
|
810 |
+
|
811 |
+
# Build the match groups object
|
812 |
+
match_obj.counts = Counter({s: int(c) for s, c in zip(strings, counts)})
|
813 |
+
match_obj.labels = {s: g[-1] for g in groups for s in g}
|
814 |
+
match_obj.groups = {g[-1]: list(g) for g in groups}
|
815 |
+
|
816 |
+
elif match_format == 'pairs':
|
817 |
+
# TODO: Allow pairs data to use counts
|
818 |
+
for pair_column in pair_columns:
|
819 |
+
match_obj.add_strings(df[pair_column].values, inplace=True)
|
820 |
+
|
821 |
+
# There are several ways to unite pairs
|
822 |
+
# Guessing it is most efficient to "group by" one of the string columns
|
823 |
+
groups = {s: pair[1] for pair in df[pair_columns].values for s in pair}
|
824 |
+
|
825 |
+
match_obj.unite(groups, inplace=True)
|
826 |
+
|
827 |
+
return match_obj
|
828 |
+
|
829 |
+
|
830 |
+
def read_csv(
|
831 |
+
filename,
|
832 |
+
match_format='detect',
|
833 |
+
pair_columns=[
|
834 |
+
'string0',
|
835 |
+
'string1'],
|
836 |
+
string_column='string',
|
837 |
+
group_column='group',
|
838 |
+
count_column='count',
|
839 |
+
**pandas_args):
|
840 |
+
"""
|
841 |
+
Read a csv file and construct a new match groups object.
|
842 |
+
|
843 |
+
Parameters
|
844 |
+
----------
|
845 |
+
filename : str
|
846 |
+
The path to the csv file.
|
847 |
+
match_format : str, optional (default='detect')
|
848 |
+
One of "unmatched", "groups", "pairs", or "detect".
|
849 |
+
pair_columns : list of str, optional (default=['string0', 'string1'])
|
850 |
+
Two string columns to use if match_format='pairs'.
|
851 |
+
string_column : str, optional (default='string')
|
852 |
+
Column name for string values in match_format='unmatched' or 'groups'.
|
853 |
+
group_column : str, optional (default='group')
|
854 |
+
Column name for group values in match_format='groups'.
|
855 |
+
count_column : str, optional (default='count')
|
856 |
+
Column name for count values in match_format='unmatched' or 'groups'.
|
857 |
+
**pandas_args : optional
|
858 |
+
Optional arguments to pass to `pandas.read_csv`.
|
859 |
+
|
860 |
+
Returns
|
861 |
+
-------
|
862 |
+
MatchGroups
|
863 |
+
A new match groups object built from the csv file.
|
864 |
+
"""
|
865 |
+
df = pd.read_csv(filename, **pandas_args, na_filter=False)
|
866 |
+
df = df.astype(str)
|
867 |
+
|
868 |
+
return from_df(df, match_format=match_format, pair_columns=pair_columns,
|
869 |
+
string_column=string_column, group_column=group_column,
|
870 |
+
count_column=count_column)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e112a851e5079096d2f0bab96d21dfb0dea8cd92a2f23fe9218cc65dd9777fbe
|
3 |
+
size 499051193
|
scoring.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import random
|
3 |
+
|
4 |
+
|
5 |
+
def confusion_df(predicted_groupings, gold_groupings, use_counts=True):
|
6 |
+
"""
|
7 |
+
Computes the confusion matrix dataframe for a predicted match groups object relative to a gold match groups object.
|
8 |
+
|
9 |
+
Parameters
|
10 |
+
----------
|
11 |
+
predicted_groupings : MatchGroups
|
12 |
+
The predicted match groups object.
|
13 |
+
gold_groupings : MatchGroups
|
14 |
+
The gold match groups object.
|
15 |
+
use_counts : bool, optional
|
16 |
+
Use the count of each string. If False, the count is set to 1.
|
17 |
+
|
18 |
+
Returns
|
19 |
+
-------
|
20 |
+
df : pandas.DataFrame
|
21 |
+
Confusion matrix dataframe with columns 'TP', 'FP', 'TN', and 'FN'.
|
22 |
+
"""
|
23 |
+
|
24 |
+
df = pd.merge(
|
25 |
+
predicted_groupings.to_df(),
|
26 |
+
gold_groupings.to_df().drop(
|
27 |
+
'count',
|
28 |
+
axis=1),
|
29 |
+
on='string',
|
30 |
+
suffixes=[
|
31 |
+
'_pred',
|
32 |
+
'_gold'])
|
33 |
+
|
34 |
+
if not use_counts:
|
35 |
+
df['count'] = 1
|
36 |
+
|
37 |
+
df['TP'] = (df.groupby(['group_pred', 'group_gold'])[
|
38 |
+
'count'].transform('sum') - df['count']) * df['count']
|
39 |
+
df['FP'] = (df.groupby('group_pred')['count'].transform(
|
40 |
+
'sum') - df['count']) * df['count'] - df['TP']
|
41 |
+
df['FN'] = (df.groupby('group_gold')['count'].transform(
|
42 |
+
'sum') - df['count']) * df['count'] - df['TP']
|
43 |
+
df['TN'] = (df['count'].sum() - df['count']) * \
|
44 |
+
df['count'] - df['TP'] - df['FP'] - df['FN']
|
45 |
+
|
46 |
+
return df
|
47 |
+
|
48 |
+
|
49 |
+
def confusion_matrix(predicted_groupings, gold_groupings, use_counts=True):
|
50 |
+
"""
|
51 |
+
Computes the confusion matrix for a predicted match groups object relative to a gold match groups object.
|
52 |
+
|
53 |
+
Parameters
|
54 |
+
----------
|
55 |
+
predicted_groupings : MatchGroups
|
56 |
+
The predicted match groups object.
|
57 |
+
gold_groupings : MatchGroups
|
58 |
+
The gold match groups object.
|
59 |
+
use_counts : bool, optional
|
60 |
+
Use the count of each string. If False, the count is set to 1.
|
61 |
+
|
62 |
+
Returns
|
63 |
+
-------
|
64 |
+
confusion_matrix : dict
|
65 |
+
Dictionary with keys 'TP', 'FP', 'TN', and 'FN', representing the values in the confusion matrix.
|
66 |
+
"""
|
67 |
+
|
68 |
+
df = confusion_df(predicted_groupings, gold_groupings, use_counts=use_counts)
|
69 |
+
|
70 |
+
return {c: df[c].sum() // 2 for c in ['TP', 'FP', 'TN', 'FN']}
|
71 |
+
|
72 |
+
|
73 |
+
def score_predicted(
|
74 |
+
predicted_groupings,
|
75 |
+
gold_groupings,
|
76 |
+
use_counts=True,
|
77 |
+
drop_self_matches=True):
|
78 |
+
"""
|
79 |
+
Computes the F1 score of a predicted match groups object relative to a gold match groups object
|
80 |
+
which is assumed to be correct.
|
81 |
+
|
82 |
+
Parameters
|
83 |
+
----------
|
84 |
+
predicted_groupings : MatchGroups
|
85 |
+
The predicted match groups object .
|
86 |
+
gold_groupings : MatchGroups
|
87 |
+
The gold match groups object.
|
88 |
+
use_counts : bool, optional
|
89 |
+
Use the count of each string. If False, the count is set to 1.
|
90 |
+
drop_self_matches : bool, optional
|
91 |
+
Remove the matches between a string and itself.
|
92 |
+
|
93 |
+
Returns
|
94 |
+
-------
|
95 |
+
scores : dict
|
96 |
+
Dictionary with keys 'accuracy', 'precision', 'recall', 'F1', and 'coverage'.
|
97 |
+
"""
|
98 |
+
|
99 |
+
scores = confusion_matrix(
|
100 |
+
predicted_groupings,
|
101 |
+
gold_groupings,
|
102 |
+
use_counts=use_counts)
|
103 |
+
|
104 |
+
n_scored = scores['TP'] + scores['TN'] + scores['FP'] + scores['FN']
|
105 |
+
|
106 |
+
if use_counts:
|
107 |
+
n_predicted = (sum(predicted_groupings.counts.values())**2 -
|
108 |
+
sum(c**2 for c in predicted_groupings.counts.values())) / 2
|
109 |
+
else:
|
110 |
+
n_predicted = (len(predicted_groupings)**2
|
111 |
+
- len(predicted_groupings)) / 2
|
112 |
+
|
113 |
+
scores['coverage'] = n_scored / n_predicted
|
114 |
+
|
115 |
+
if scores['TP']:
|
116 |
+
scores['accuracy'] = (scores['TP'] + scores['TN']) / n_scored
|
117 |
+
scores['precision'] = scores['TP'] / (scores['TP'] + scores['FP'])
|
118 |
+
scores['recall'] = scores['TP'] / (scores['TP'] + scores['FN'])
|
119 |
+
scores['F1'] = 2 * (scores['precision'] * scores['recall']) / \
|
120 |
+
(scores['precision'] + scores['recall'])
|
121 |
+
|
122 |
+
else:
|
123 |
+
scores['accuracy'] = 0
|
124 |
+
scores['precision'] = 0
|
125 |
+
scores['recall'] = 0
|
126 |
+
scores['F1'] = 0
|
127 |
+
|
128 |
+
return scores
|
129 |
+
|
130 |
+
|
131 |
+
def split_on_groups(groupings, frac=0.5, seed=None):
|
132 |
+
"""
|
133 |
+
Splits the match groups object into two parts by given fraction.
|
134 |
+
|
135 |
+
Parameters
|
136 |
+
----------
|
137 |
+
groupings : MatchGroups
|
138 |
+
The match groups object to be split.
|
139 |
+
frac : float, optional
|
140 |
+
The fraction of groups to select.
|
141 |
+
seed : int, optional
|
142 |
+
Seed for the random number generator.
|
143 |
+
|
144 |
+
Returns
|
145 |
+
-------
|
146 |
+
groupings1, groupings2 : tuple of match groups objects
|
147 |
+
Tuple of two match groups objects.
|
148 |
+
"""
|
149 |
+
if seed is not None:
|
150 |
+
random.seed(seed)
|
151 |
+
|
152 |
+
groups = list(groupings.groups.values())
|
153 |
+
random.shuffle(groups)
|
154 |
+
|
155 |
+
selected_groups = groups[:int(frac * len(groups))]
|
156 |
+
selected_strings = [s for group in selected_groups for s in group]
|
157 |
+
|
158 |
+
return groupings.keep(selected_strings), groupings.drop(selected_strings)
|
159 |
+
|
160 |
+
|
161 |
+
def kfold_on_groups(groupings, k=4, shuffle=True, seed=None):
|
162 |
+
"""
|
163 |
+
Perform K-fold cross validation on groups of strings.
|
164 |
+
|
165 |
+
Parameters
|
166 |
+
----------
|
167 |
+
groupings : object
|
168 |
+
MatchGroups object to perform K-fold cross validation on.
|
169 |
+
k : int, optional
|
170 |
+
Number of folds to perform, by default 4.
|
171 |
+
shuffle : bool, optional
|
172 |
+
Whether to shuffle the groups before splitting, by default True.
|
173 |
+
seed : int, optional
|
174 |
+
Seed for the random number generator, by default None.
|
175 |
+
|
176 |
+
Yields
|
177 |
+
------
|
178 |
+
tuple : MatchGroups, MatchGroups
|
179 |
+
A tuple of k match groups objects, the first for the training set and the second for the testing set for each fold.
|
180 |
+
"""
|
181 |
+
if seed is not None:
|
182 |
+
random.seed(seed)
|
183 |
+
|
184 |
+
groups = list(groupings.groups.keys())
|
185 |
+
|
186 |
+
if shuffle:
|
187 |
+
random.shuffle(groups)
|
188 |
+
else:
|
189 |
+
groups = sorted(groups)
|
190 |
+
|
191 |
+
for fold in range(k):
|
192 |
+
|
193 |
+
fold_groups = groups[fold::k]
|
194 |
+
fold_strings = [s for g in fold_groups for s in groupings.groups[g]]
|
195 |
+
|
196 |
+
yield groupings.drop(fold_strings), groupings.keep(fold_strings)
|
scoring_model.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
class SimilarityScore(torch.nn.Module):
|
5 |
+
"""
|
6 |
+
A trainable similarity scoring model that estimates the probability
|
7 |
+
of a match as the negative exponent of 1+cosine distance between
|
8 |
+
embeddings:
|
9 |
+
p(match|v_i,v_j) = exp(-alpha*(1-v_i@v_j))
|
10 |
+
"""
|
11 |
+
def __init__(self,config,**kwargs):
|
12 |
+
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
self.alpha = torch.nn.Parameter(torch.tensor(float(config.get("alpha"))))
|
16 |
+
|
17 |
+
def __repr__(self):
|
18 |
+
return f'<nama.ExpCosSimilarity with {self.alpha=}>'
|
19 |
+
|
20 |
+
def forward(self,X):
|
21 |
+
# Z is a scaled distance measure: Z=0 means that the score should be 1
|
22 |
+
Z = self.alpha*(1 - X)
|
23 |
+
return torch.clamp(torch.exp(-Z),min=0,max=1.0)
|
24 |
+
|
25 |
+
def loss(self,X,Y,weights=None,decay=1e-6,epsilon=1e-6):
|
26 |
+
|
27 |
+
Z = self.alpha*(1 - X)
|
28 |
+
|
29 |
+
# Put epsilon floor to prevent overflow/undefined results
|
30 |
+
# Z = torch.tensor([1e-2,1e-3,1e-6,1e-7,1e-8,1e-9])
|
31 |
+
# torch.log(1 - torch.exp(-Z))
|
32 |
+
# 1/(1 - torch.exp(-Z))
|
33 |
+
with torch.no_grad():
|
34 |
+
Z_eps_adjustment = torch.clamp(epsilon-Z,min=0)
|
35 |
+
|
36 |
+
Z += Z_eps_adjustment
|
37 |
+
|
38 |
+
# Cross entropy loss with a simplified and (hopefully) numerically appropriate formula
|
39 |
+
# TODO: Stick an epsilon in here to prevent nan?
|
40 |
+
loss = Y*Z - torch.xlogy(1-Y,-torch.expm1(-Z))
|
41 |
+
# loss = Y*Z - torch.xlogy(1-Y,1-torch.exp(-Z))
|
42 |
+
|
43 |
+
if weights is not None:
|
44 |
+
loss *= weights*loss
|
45 |
+
|
46 |
+
if decay:
|
47 |
+
loss += decay*self.alpha**2
|
48 |
+
|
49 |
+
return loss
|
50 |
+
|
51 |
+
def score_to_cos(self,score):
|
52 |
+
if score > 0:
|
53 |
+
return 1 + np.log(score)/self.alpha.item()
|
54 |
+
else:
|
55 |
+
return -99
|
56 |
+
|
57 |
+
def config_optimizer(self,lr=10):
|
58 |
+
optimizer = torch.optim.AdamW(self.parameters(),lr=lr,weight_decay=0)
|
59 |
+
|
60 |
+
return optimizer
|
similarity_model.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from tqdm import tqdm
|
5 |
+
from copy import copy,deepcopy
|
6 |
+
from collections import Counter
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
from transformers import get_cosine_schedule_with_warmup,get_linear_schedule_with_warmup, logging
|
11 |
+
from transformers.modeling_utils import PreTrainedModel
|
12 |
+
|
13 |
+
from .match_groups import MatchGroups
|
14 |
+
from .scoring import score_predicted
|
15 |
+
from .scoring_model import SimilarityScore
|
16 |
+
from .embeddings import Embeddings
|
17 |
+
from .embedding_model import EmbeddingModel
|
18 |
+
from .configuration import SimilarityModelConfig
|
19 |
+
logging.set_verbosity_error()
|
20 |
+
|
21 |
+
|
22 |
+
class ExponentWeights():
|
23 |
+
def __init__(self, config,**kwargs):
|
24 |
+
self.exponent = config.get("weighting_exponent", 0.5)
|
25 |
+
|
26 |
+
def __call__(self,counts):
|
27 |
+
return counts**self.exponent
|
28 |
+
|
29 |
+
|
30 |
+
class SimilarityModel(PreTrainedModel):
|
31 |
+
config_class = SimilarityModelConfig
|
32 |
+
"""
|
33 |
+
A combined embedding/scorer model that produces Embeddings objects
|
34 |
+
as its primary output.
|
35 |
+
|
36 |
+
- train() jointly optimizes the embedding_model and score_model using
|
37 |
+
contrastive learning to learn from a training MatchGroups.
|
38 |
+
"""
|
39 |
+
def __init__(self, config, **kwargs):
|
40 |
+
super().__init__(config)
|
41 |
+
|
42 |
+
self.embedding_model = EmbeddingModel(config.embedding_model_config, **kwargs)
|
43 |
+
self.score_model = SimilarityScore(config.score_model_config, **kwargs)
|
44 |
+
self.weighting_function = ExponentWeights(config.weighting_function_config, **kwargs)
|
45 |
+
|
46 |
+
self.config = config
|
47 |
+
self.to(config.device)
|
48 |
+
|
49 |
+
def to(self,device):
|
50 |
+
super().to(device)
|
51 |
+
self.embedding_model.to(device)
|
52 |
+
self.score_model.to(device)
|
53 |
+
#self.device = device
|
54 |
+
|
55 |
+
def save(self,savefile):
|
56 |
+
torch.save({'metadata': self.config, 'state_dict': self.state_dict()}, savefile)
|
57 |
+
|
58 |
+
@torch.no_grad()
|
59 |
+
def embed(self,input,to=None,batch_size=64,progress_bar=True,**kwargs):
|
60 |
+
"""
|
61 |
+
Construct an Embeddings object from input strings or a MatchGroups
|
62 |
+
"""
|
63 |
+
|
64 |
+
if to is None:
|
65 |
+
to = self.device
|
66 |
+
|
67 |
+
if isinstance(input, MatchGroups):
|
68 |
+
strings = input.strings()
|
69 |
+
counts = torch.tensor([input.counts[s] for s in strings],device=self.device).float().to(to)
|
70 |
+
|
71 |
+
else:
|
72 |
+
strings = list(input)
|
73 |
+
counts = torch.ones(len(strings),device=self.device).float().to(to)
|
74 |
+
|
75 |
+
input_loader = DataLoader(strings,batch_size=batch_size,num_workers=0)
|
76 |
+
|
77 |
+
self.embedding_model.eval()
|
78 |
+
|
79 |
+
V = None
|
80 |
+
batch_start = 0
|
81 |
+
with tqdm(total=len(strings),delay=1,desc='Embedding strings',disable=not progress_bar) as pbar:
|
82 |
+
for batch_strings in input_loader:
|
83 |
+
|
84 |
+
v = self.embedding_model(batch_strings).detach().to(to)
|
85 |
+
|
86 |
+
if V is None:
|
87 |
+
# Use v to determine dim and dtype of pre-allocated embedding tensor
|
88 |
+
# (Pre-allocating avoids duplicating tensors with a big .cat() operation)
|
89 |
+
V = torch.empty(len(strings),v.shape[1],device=to,dtype=v.dtype)
|
90 |
+
|
91 |
+
V[batch_start:batch_start+len(batch_strings),:] = v
|
92 |
+
|
93 |
+
pbar.update(len(batch_strings))
|
94 |
+
batch_start += len(batch_strings)
|
95 |
+
|
96 |
+
score_model = copy(self.score_model)
|
97 |
+
score_model.load_state_dict(self.score_model.state_dict())
|
98 |
+
score_model.to(to)
|
99 |
+
|
100 |
+
weighting_function = deepcopy(self.weighting_function)
|
101 |
+
|
102 |
+
return Embeddings(strings=strings,
|
103 |
+
V=V.detach(),
|
104 |
+
counts=counts.detach(),
|
105 |
+
score_model=score_model,
|
106 |
+
weighting_function=weighting_function,
|
107 |
+
device=to)
|
108 |
+
|
109 |
+
def train(self,training_groupings,max_epochs=1,batch_size=8,
|
110 |
+
score_decay=0,regularization=0,
|
111 |
+
transformer_lr=1e-5,projection_lr=1e-5,score_lr=10,warmup_frac=0.1,
|
112 |
+
max_grad_norm=1,dropout=False,
|
113 |
+
validation_groupings=None,target='F1',restore_best=True,val_seed=None,
|
114 |
+
validation_interval=1000,early_stopping=True,early_stopping_patience=3,
|
115 |
+
verbose=False,progress_bar=True,
|
116 |
+
**kwargs):
|
117 |
+
|
118 |
+
"""
|
119 |
+
Train the embedding_model and score_model to predict match probabilities
|
120 |
+
using the training_groupings as a source of "correct" matches.
|
121 |
+
Training algorithm uses contrastive learning with hard-positive
|
122 |
+
and hard-negative mining to fine tune the embedding model to place
|
123 |
+
matched strings near to each other in embedding space, while
|
124 |
+
simulataneously calibrating the score_model to predict the match
|
125 |
+
probabilities as a function of cosine distance
|
126 |
+
"""
|
127 |
+
|
128 |
+
if validation_groupings is None:
|
129 |
+
early_stopping = False
|
130 |
+
restore_best = False
|
131 |
+
|
132 |
+
num_training_steps = max_epochs*len(training_groupings)//batch_size
|
133 |
+
num_warmup_steps = int(warmup_frac*num_training_steps)
|
134 |
+
|
135 |
+
if transformer_lr or projection_lr:
|
136 |
+
embedding_optimizer = self.embedding_model.config_optimizer(transformer_lr,projection_lr)
|
137 |
+
embedding_scheduler = get_cosine_schedule_with_warmup(
|
138 |
+
embedding_optimizer,
|
139 |
+
num_warmup_steps=num_warmup_steps,
|
140 |
+
num_training_steps=num_training_steps)
|
141 |
+
if score_lr:
|
142 |
+
score_optimizer = self.score_model.config_optimizer(score_lr)
|
143 |
+
score_scheduler = get_linear_schedule_with_warmup(
|
144 |
+
score_optimizer,
|
145 |
+
num_warmup_steps=num_warmup_steps,
|
146 |
+
num_training_steps=num_training_steps)
|
147 |
+
|
148 |
+
step = 0
|
149 |
+
self.history = []
|
150 |
+
self.val_scores = []
|
151 |
+
for epoch in range(max_epochs):
|
152 |
+
|
153 |
+
global_embeddings = self.embed(training_groupings)
|
154 |
+
|
155 |
+
strings = global_embeddings.strings
|
156 |
+
V = global_embeddings.V
|
157 |
+
w = global_embeddings.w
|
158 |
+
|
159 |
+
groups = torch.tensor([global_embeddings.string_map[training_groupings[s]] for s in strings],device=self.device)
|
160 |
+
|
161 |
+
# Normalize weights to make learning rates more general
|
162 |
+
if w is not None:
|
163 |
+
w = w/w.mean()
|
164 |
+
|
165 |
+
shuffled_ids = list(range(len(strings)))
|
166 |
+
random.shuffle(shuffled_ids)
|
167 |
+
|
168 |
+
if dropout:
|
169 |
+
self.embedding_model.train()
|
170 |
+
else:
|
171 |
+
self.embedding_model.eval()
|
172 |
+
|
173 |
+
for batch_start in tqdm(range(0,len(strings),batch_size),desc=f'training epoch {epoch}',disable=not progress_bar):
|
174 |
+
|
175 |
+
h = {'epoch':epoch,'step':step}
|
176 |
+
|
177 |
+
batch_i = shuffled_ids[batch_start:batch_start+batch_size]
|
178 |
+
|
179 |
+
# Recycle ids from the beginning to pad the last batch if necessary
|
180 |
+
if len(batch_i) < batch_size:
|
181 |
+
batch_i = batch_i + shuffled_ids[:(batch_size-len(batch_i))]
|
182 |
+
|
183 |
+
"""
|
184 |
+
Find highest loss match for each batch string (global search)
|
185 |
+
|
186 |
+
Note: If we compute V_i with dropout enabled, it will add noise
|
187 |
+
to the embeddings and prevent the same pairs from being selected
|
188 |
+
every time.
|
189 |
+
"""
|
190 |
+
V_i = self.embedding_model(strings[batch_i])
|
191 |
+
|
192 |
+
# Update global embedding cache
|
193 |
+
V[batch_i,:] = V_i.detach()
|
194 |
+
|
195 |
+
with torch.no_grad():
|
196 |
+
|
197 |
+
global_X = V_i@V.T
|
198 |
+
global_Y = (groups[batch_i][:,None] == groups[None,:]).float()
|
199 |
+
|
200 |
+
if w is not None:
|
201 |
+
global_W = torch.outer(w[batch_i],w)
|
202 |
+
else:
|
203 |
+
global_W = None
|
204 |
+
|
205 |
+
# Train scoring model only
|
206 |
+
if score_lr:
|
207 |
+
# Make sure gradients are enabled for score model
|
208 |
+
self.score_model.requires_grad_(True)
|
209 |
+
|
210 |
+
global_loss = self.score_model.loss(global_X,global_Y,weights=global_W,decay=score_decay)
|
211 |
+
|
212 |
+
score_optimizer.zero_grad()
|
213 |
+
global_loss.nanmean().backward()
|
214 |
+
torch.nn.utils.clip_grad_norm_(self.score_model.parameters(),max_norm=max_grad_norm)
|
215 |
+
|
216 |
+
score_optimizer.step()
|
217 |
+
score_scheduler.step()
|
218 |
+
|
219 |
+
h['score_lr'] = score_optimizer.param_groups[0]['lr']
|
220 |
+
h['global_mean_cos'] = global_X.mean().item()
|
221 |
+
try:
|
222 |
+
h['score_alpha'] = self.score_model.alpha.item()
|
223 |
+
except:
|
224 |
+
pass
|
225 |
+
|
226 |
+
else:
|
227 |
+
with torch.no_grad():
|
228 |
+
global_loss = self.score_model.loss(global_X,global_Y)
|
229 |
+
|
230 |
+
h['global_loss'] = global_loss.detach().nanmean().item()
|
231 |
+
|
232 |
+
# Train embedding model
|
233 |
+
if (transformer_lr or projection_lr) and step <= num_warmup_steps + num_training_steps:
|
234 |
+
|
235 |
+
# Turn off score model updating - only want to train embedding here
|
236 |
+
self.score_model.requires_grad_(False)
|
237 |
+
|
238 |
+
# Select hard training examples
|
239 |
+
with torch.no_grad():
|
240 |
+
batch_j = global_loss.argmax(dim=1).flatten()
|
241 |
+
|
242 |
+
if w is not None:
|
243 |
+
batch_W = torch.outer(w[batch_i],w[batch_j])
|
244 |
+
else:
|
245 |
+
batch_W = None
|
246 |
+
|
247 |
+
# Train the model on the selected high-loss pairs
|
248 |
+
V_j = self.embedding_model(strings[batch_j.tolist()])
|
249 |
+
|
250 |
+
# Update global embedding cache
|
251 |
+
V[batch_j,:] = V_j.detach()
|
252 |
+
|
253 |
+
batch_X = V_i@V_j.T
|
254 |
+
batch_Y = (groups[batch_i][:,None] == groups[batch_j][None,:]).float()
|
255 |
+
h['batch_obs'] = len(batch_i)*len(batch_j)
|
256 |
+
|
257 |
+
batch_loss = self.score_model.loss(batch_X,batch_Y,weights=batch_W)
|
258 |
+
|
259 |
+
if regularization:
|
260 |
+
# Apply Global Orthogonal Regularization from https://arxiv.org/abs/1708.06320
|
261 |
+
gor_Y = (groups[batch_i][:,None] != groups[batch_i][None,:]).float()
|
262 |
+
gor_n = gor_Y.sum()
|
263 |
+
if gor_n > 1:
|
264 |
+
gor_X = (V_i@V_i.T)*gor_Y
|
265 |
+
gor_m1 = 0.5*gor_X.sum()/gor_n
|
266 |
+
gor_m2 = 0.5*(gor_X**2).sum()/gor_n
|
267 |
+
batch_loss += regularization*(gor_m1 + torch.clamp(gor_m2 - 1/self.embedding_model.d,min=0))
|
268 |
+
|
269 |
+
h['batch_nan'] = torch.isnan(batch_loss.detach()).sum().item()
|
270 |
+
|
271 |
+
embedding_optimizer.zero_grad()
|
272 |
+
batch_loss.nanmean().backward()
|
273 |
+
|
274 |
+
torch.nn.utils.clip_grad_norm_(self.parameters(),max_norm=max_grad_norm)
|
275 |
+
|
276 |
+
embedding_optimizer.step()
|
277 |
+
embedding_scheduler.step()
|
278 |
+
|
279 |
+
h['transformer_lr'] = embedding_optimizer.param_groups[1]['lr']
|
280 |
+
h['projection_lr'] = embedding_optimizer.param_groups[-1]['lr']
|
281 |
+
|
282 |
+
# Save stats
|
283 |
+
h['batch_loss'] = batch_loss.detach().mean().item()
|
284 |
+
h['batch_pos_target'] = batch_Y.detach().mean().item()
|
285 |
+
|
286 |
+
self.history.append(h)
|
287 |
+
step += 1
|
288 |
+
|
289 |
+
if (validation_groupings is not None) and not (step % validation_interval):
|
290 |
+
|
291 |
+
validation = len(self.validation_scores)
|
292 |
+
val_scores = self.test(validation_groupings)
|
293 |
+
val_scores['step'] = step - 1
|
294 |
+
val_scores['epoch'] = epoch
|
295 |
+
val_scores['validation'] = validation
|
296 |
+
|
297 |
+
self.validation_scores.append(val_scores)
|
298 |
+
|
299 |
+
# Print validation stats
|
300 |
+
if verbose:
|
301 |
+
print(f'\nValidation results at step {step} (current epoch {epoch})')
|
302 |
+
for k,v in val_scores.items():
|
303 |
+
print(f' {k}: {v:.4f}')
|
304 |
+
|
305 |
+
print(list(self.score_model.named_parameters()))
|
306 |
+
|
307 |
+
# Update best saved model
|
308 |
+
if restore_best:
|
309 |
+
if val_scores[target] >= max(h[target] for h in self.validation_scores):
|
310 |
+
best_state = deepcopy({
|
311 |
+
'state_dict':self.state_dict(),
|
312 |
+
'val_scores':val_scores
|
313 |
+
})
|
314 |
+
|
315 |
+
if early_stopping and (validation - best_state['val_scores']['validation'] > early_stopping_patience):
|
316 |
+
print(f'Stopping training ({early_stopping_patience} validation checks since best validation score)')
|
317 |
+
break
|
318 |
+
|
319 |
+
if restore_best:
|
320 |
+
print(f"Restoring to best state (step {best_state['val_scores']['step']}):")
|
321 |
+
for k,v in best_state['val_scores'].items():
|
322 |
+
print(f' {k}: {v:.4f}')
|
323 |
+
|
324 |
+
self.to('cpu')
|
325 |
+
self.load_state_dict(best_state['state_dict'])
|
326 |
+
self.to(self.device)
|
327 |
+
|
328 |
+
return pd.DataFrame(self.history)
|
329 |
+
|
330 |
+
def unite_similar(self,input,**kwargs):
|
331 |
+
embeddings = self.embed(input,**kwargs)
|
332 |
+
return embeddings.unite_similar(**kwargs)
|
333 |
+
|
334 |
+
def test(self,gold_groupings, threshold=0.5, **kwargs):
|
335 |
+
embeddings = self.embed(gold_groupings, **kwargs)
|
336 |
+
|
337 |
+
if (isinstance(threshold, float)):
|
338 |
+
predicted = embeddings.unite_similar(threshold=threshold, **kwargs)
|
339 |
+
scores = score_predicted(predicted, gold_groupings, use_counts=True)
|
340 |
+
|
341 |
+
return scores
|
342 |
+
|
343 |
+
results = []
|
344 |
+
for thres in threshold:
|
345 |
+
predicted = embeddings.unite_similar(threshold=thres, **kwargs)
|
346 |
+
|
347 |
+
scores = score_predicted(predicted, gold_groupings, use_counts=True)
|
348 |
+
scores["threshold"] = thres
|
349 |
+
results.append(scores)
|
350 |
+
|
351 |
+
|
352 |
+
return results
|
353 |
+
|
354 |
+
|
355 |
+
|
356 |
+
def load_similarity_model(f,map_location='cpu',*args,**kwargs):
|
357 |
+
checkpoint = torch.load(f, map_location=map_location, **kwargs)
|
358 |
+
metadata = checkpoint['metadata']
|
359 |
+
state_dict = checkpoint['state_dict']
|
360 |
+
|
361 |
+
model = SimilarityModel(config=metadata)
|
362 |
+
model.load_state_dict(state_dict)
|
363 |
+
|
364 |
+
return model
|
365 |
+
#return torch.load(f,map_location=map_location,**kwargs)
|
366 |
+
|
367 |
+
|
368 |
+
|
369 |
+
|