# from scipy.special import softmax | |
import tensorflow as tf | |
from transformers import Pipeline | |
import tensorflow as tf | |
import numpy as np | |
import json | |
from hazm import * | |
from scipy.spatial import distance | |
class PreTrainedPipeline(): | |
def __init__(self, path): | |
self.model_dir = path + "/saved_model" | |
self.t2id_path = path + "/t2id.json" | |
self.id2h_path = path + "/id2h.json" | |
self.stopwords_path = path + "/stopwords.txt" | |
self.comparison_matrix_path = path + "/comparison_matrix.npz" | |
self.t2id = json.load(open(self.t2id_path,encoding="utf8")) | |
self.id2h = json.load(open(self.id2h_path,encoding="utf8")) | |
self.stopwords = set(line.strip() for line in open(self.stopwords_path,encoding="utf8")) | |
self.comparisons = np.load(self.comparison_matrix_path)['arr_0'] | |
self.model = tf.saved_model.load(self.model_dir) | |
def __call__(self, inputs: str): | |
# Preprocess the input sentence | |
sentence = Normalizer().normalize(inputs) | |
tokens = word_tokenize(sentence) | |
tokens = [t for t in tokens if t not in self.stopwords] | |
input_ids = np.zeros((1, 20)) | |
for i, token in enumerate(tokens): | |
if i >= 20: | |
break | |
input_ids[0, i] = self.t2id.get(token, self.t2id['UNK']) | |
# Call the model on the input ids | |
embeddings = self.model(tf.constant(input_ids, dtype=tf.int32)).numpy() | |
# Postprocess the embeddings to get the most similar words | |
similarities = distance.cdist(embeddings.reshape((1,300)), self.comparisons, "cosine")[0] | |
top_indices = similarities.argsort()[:10] | |
top_words = [[self.id2h[str(top_indices[i])]] for i in range(10)] | |
logits = np.exp(-10*np.array(similarities[top_indices])) | |
softmax_probs = tf.nn.softmax(logits).numpy() | |
top_scores = [round(float(softmax_probs[i]), 3) for i in range(10)] | |
return [ | |
[{'lable': word, 'score': score} for word, score in zip(top_words, top_scores)] | |
] | |
# return [ | |
# [ # Sample output, call the model here TODO | |
# {'label': 'POSITIVE', 'score': 0.05}, | |
# {'label': 'NEGATIVE', 'score': 0.03}, | |
# {'label': 'معنی', 'score': 0.92}, | |
# {'label': f'{inputs}', 'score': 0}, | |
# ] | |
# ] | |
# def RevDict(sent,flag,model): | |
# """ | |
# This function recieves a sentence from the user, and turns back top_10 (for flag=0) or top_100 (for flag=1) predictions. | |
# the input sentence will be normalized, and stop words will be removed | |
# """ | |
# normalizer = Normalizer() | |
# X_Normalized = normalizer.normalize(sent) | |
# X_Tokens = word_tokenize(X_Normalized) | |
# stopwords = [normalizer.normalize(x.strip()) for x in codecs.open(r"stopwords.txt",'r','utf-8').readlines()] | |
# X_Tokens = [t for t in X_Tokens if t not in stopwords] | |
# preprocessed = [' '.join(X_Tokens)][0] | |
# sent_ids = sent2id([preprocessed]) | |
# output=np.array((model.predict(sent_ids.reshape((1,20))).tolist()[0])) | |
# distances=distance.cdist(output.reshape((1,300)), comparison_matrix, "cosine")[0] | |
# min_index_100 = distances.argsort()[:100] | |
# min_index_10 = distances.argsort()[:10] | |
# temp=[] | |
# if flag == 0: | |
# for i in range(10): | |
# temp.append(id2h[str(min_index_10[i])]) | |
# elif flag == 1: | |
# for i in range(100): | |
# temp.append(id2h[str(min_index_100[i])]) | |
# for i in range(len(temp)): | |
# print(temp[i]) | |
# def sent2id(sents): | |
# sents_id=np.zeros((len(sents),20)) | |
# for j in tqdm(range(len(sents))): | |
# for i,word in enumerate(sents[j].split()): | |
# try: | |
# sents_id[j,i] = t2id[word] | |
# except: | |
# sents_id[j,i] = t2id['UNK'] | |
# if i==19: | |
# break | |
# return sents_id | |