make_err_ft_results / README.md
be2be2's picture
be2be2/et5-typos-maker-ver2
a74a80c verified
metadata
library_name: transformers
license: apache-2.0
base_model: j5ng/et5-typos-corrector
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: make_err_ft_results
    results: []

make_err_ft_results

This model is a fine-tuned version of j5ng/et5-typos-corrector on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7980
  • Rouge1: 0.0
  • Rouge2: 0.0
  • Rougel: 0.0
  • Rougelsum: 0.0
  • Gen Len: 12.393

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.6767 0.05 100 1.7986 0.0 0.0 0.0 0.0 11.7733
1.8043 0.1 200 1.5141 0.0 0.0 0.0 0.0 11.96
1.5302 0.15 300 1.3564 0.0 0.0 0.0 0.0 12.1402
1.4056 0.2 400 1.2753 0.0 0.0 0.0 0.0 12.152
1.3319 0.25 500 1.1993 0.0 0.0 0.0 0.0 12.1468
1.2765 0.3 600 1.1429 0.0 0.0 0.0 0.0 12.1095
1.2172 0.35 700 1.1243 0.0 0.0 0.0 0.0 12.1418
1.1631 0.4 800 1.0812 0.0 0.0 0.0 0.0 12.138
1.1409 0.45 900 1.0510 0.0 0.0 0.0 0.0 12.1267
1.1012 0.5 1000 1.0116 0.0 0.0 0.0 0.0 12.2747
1.0973 0.55 1100 0.9905 0.0 0.0 0.0 0.0 12.358
1.0126 0.6 1200 0.9786 0.0 0.0 0.0 0.0 12.3313
1.0697 0.65 1300 0.9535 0.0 0.0 0.0 0.0 12.252
1.0192 0.7 1400 0.9333 0.0 0.0 0.0 0.0 12.2155
1.0312 0.75 1500 0.9366 0.0 0.0 0.0 0.0 12.2265
0.9608 0.8 1600 0.9175 0.0 0.0 0.0 0.0 12.2825
1.0319 0.85 1700 0.8935 0.0 0.0 0.0 0.0 12.32
1.002 0.9 1800 0.8972 0.0 0.0 0.0 0.0 12.1375
0.9787 0.95 1900 0.8744 0.0 0.0 0.0 0.0 12.2127
0.973 1.0 2000 0.8654 0.0 0.0 0.0 0.0 12.377
0.7704 1.05 2100 0.8659 0.0 0.0 0.0 0.0 12.4095
0.7728 1.1 2200 0.8607 0.0 0.0 0.0 0.0 12.4428
0.7539 1.15 2300 0.8510 0.0 0.0 0.0 0.0 12.4315
0.7358 1.2 2400 0.8562 0.0 0.0 0.0 0.0 12.3308
0.7533 1.25 2500 0.8423 0.0 0.0 0.0 0.0 12.4243
0.7437 1.3 2600 0.8412 0.0 0.0 0.0 0.0 12.395
0.7368 1.35 2700 0.8301 0.0 0.0 0.0 0.0 12.381
0.7089 1.4 2800 0.8304 0.0 0.0 0.0 0.0 12.3552
0.7399 1.45 2900 0.8226 0.0 0.0 0.0 0.0 12.423
0.7027 1.5 3000 0.8255 0.0 0.0 0.0 0.0 12.3588
0.6931 1.55 3100 0.8173 0.0 0.0 0.0 0.0 12.4135
0.7254 1.6 3200 0.8141 0.0 0.0 0.0 0.0 12.4155
0.7203 1.65 3300 0.8102 0.0 0.0 0.0 0.0 12.4065
0.676 1.7 3400 0.8107 0.0 0.0 0.0 0.0 12.3648
0.7369 1.75 3500 0.8021 0.0 0.0 0.0 0.0 12.4313
0.6942 1.8 3600 0.8040 0.0 0.0 0.0 0.0 12.3852
0.7023 1.85 3700 0.7997 0.0 0.0 0.0 0.0 12.4072
0.6866 1.9 3800 0.8003 0.0 0.0 0.0 0.0 12.3915
0.7067 1.95 3900 0.7985 0.0 0.0 0.0 0.0 12.398
0.7163 2.0 4000 0.7980 0.0 0.0 0.0 0.0 12.393

Framework versions

  • Transformers 4.55.1
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.4