Saving best model to hub
Browse files- README.md +76 -0
- all_results.json +7 -0
- config.json +76 -0
- pytorch_model.bin +3 -0
- train_results.json +7 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/resnet-101
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: resnet101_rvl-cdip
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# resnet101_rvl-cdip
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/resnet-101](https://huggingface.co/microsoft/resnet-101) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6158
|
21 |
+
- Accuracy: 0.8210
|
22 |
+
- Brier Loss: 0.2556
|
23 |
+
- Nll: 1.7696
|
24 |
+
- F1 Micro: 0.8210
|
25 |
+
- F1 Macro: 0.8209
|
26 |
+
- Ece: 0.0176
|
27 |
+
- Aurc: 0.0418
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 64
|
48 |
+
- eval_batch_size: 64
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 10
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
|
59 |
+
| 1.3521 | 1.0 | 5000 | 1.2626 | 0.6133 | 0.5108 | 2.7262 | 0.6133 | 0.6042 | 0.0455 | 0.1644 |
|
60 |
+
| 0.942 | 2.0 | 10000 | 0.9005 | 0.7318 | 0.3723 | 2.2139 | 0.7318 | 0.7293 | 0.0174 | 0.0862 |
|
61 |
+
| 0.7983 | 3.0 | 15000 | 0.7691 | 0.7723 | 0.3198 | 2.0444 | 0.7723 | 0.7714 | 0.0139 | 0.0641 |
|
62 |
+
| 0.7167 | 4.0 | 20000 | 0.7048 | 0.7924 | 0.2931 | 1.9414 | 0.7924 | 0.7931 | 0.0135 | 0.0541 |
|
63 |
+
| 0.6656 | 5.0 | 25000 | 0.6658 | 0.8052 | 0.2770 | 1.8581 | 0.8052 | 0.8056 | 0.0108 | 0.0486 |
|
64 |
+
| 0.6252 | 6.0 | 30000 | 0.6415 | 0.8117 | 0.2670 | 1.8157 | 0.8117 | 0.8112 | 0.0128 | 0.0455 |
|
65 |
+
| 0.6038 | 7.0 | 35000 | 0.6269 | 0.8176 | 0.2607 | 1.7833 | 0.8176 | 0.8180 | 0.0144 | 0.0432 |
|
66 |
+
| 0.5784 | 8.0 | 40000 | 0.6217 | 0.8195 | 0.2583 | 1.7723 | 0.8195 | 0.8195 | 0.0151 | 0.0425 |
|
67 |
+
| 0.5583 | 9.0 | 45000 | 0.6150 | 0.8214 | 0.2553 | 1.7719 | 0.8214 | 0.8214 | 0.0164 | 0.0415 |
|
68 |
+
| 0.5519 | 10.0 | 50000 | 0.6158 | 0.8210 | 0.2556 | 1.7696 | 0.8210 | 0.8209 | 0.0176 | 0.0418 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.33.3
|
74 |
+
- Pytorch 2.2.0.dev20231002
|
75 |
+
- Datasets 2.7.1
|
76 |
+
- Tokenizers 0.13.3
|
all_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"train_loss": 0.8447013873291016,
|
4 |
+
"train_runtime": 30071.7313,
|
5 |
+
"train_samples_per_second": 106.412,
|
6 |
+
"train_steps_per_second": 1.663
|
7 |
+
}
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/resnet-101",
|
3 |
+
"architectures": [
|
4 |
+
"ResNetForImageClassification"
|
5 |
+
],
|
6 |
+
"depths": [
|
7 |
+
3,
|
8 |
+
4,
|
9 |
+
23,
|
10 |
+
3
|
11 |
+
],
|
12 |
+
"downsample_in_first_stage": false,
|
13 |
+
"embedding_size": 64,
|
14 |
+
"hidden_act": "relu",
|
15 |
+
"hidden_sizes": [
|
16 |
+
256,
|
17 |
+
512,
|
18 |
+
1024,
|
19 |
+
2048
|
20 |
+
],
|
21 |
+
"id2label": {
|
22 |
+
"0": "letter",
|
23 |
+
"1": "form",
|
24 |
+
"2": "email",
|
25 |
+
"3": "handwritten",
|
26 |
+
"4": "advertisement",
|
27 |
+
"5": "scientific_report",
|
28 |
+
"6": "scientific_publication",
|
29 |
+
"7": "specification",
|
30 |
+
"8": "file_folder",
|
31 |
+
"9": "news_article",
|
32 |
+
"10": "budget",
|
33 |
+
"11": "invoice",
|
34 |
+
"12": "presentation",
|
35 |
+
"13": "questionnaire",
|
36 |
+
"14": "resume",
|
37 |
+
"15": "memo"
|
38 |
+
},
|
39 |
+
"label2id": {
|
40 |
+
"advertisement": 4,
|
41 |
+
"budget": 10,
|
42 |
+
"email": 2,
|
43 |
+
"file_folder": 8,
|
44 |
+
"form": 1,
|
45 |
+
"handwritten": 3,
|
46 |
+
"invoice": 11,
|
47 |
+
"letter": 0,
|
48 |
+
"memo": 15,
|
49 |
+
"news_article": 9,
|
50 |
+
"presentation": 12,
|
51 |
+
"questionnaire": 13,
|
52 |
+
"resume": 14,
|
53 |
+
"scientific_publication": 6,
|
54 |
+
"scientific_report": 5,
|
55 |
+
"specification": 7
|
56 |
+
},
|
57 |
+
"layer_type": "bottleneck",
|
58 |
+
"model_type": "resnet",
|
59 |
+
"num_channels": 3,
|
60 |
+
"out_features": [
|
61 |
+
"stage4"
|
62 |
+
],
|
63 |
+
"out_indices": [
|
64 |
+
4
|
65 |
+
],
|
66 |
+
"problem_type": "single_label_classification",
|
67 |
+
"stage_names": [
|
68 |
+
"stem",
|
69 |
+
"stage1",
|
70 |
+
"stage2",
|
71 |
+
"stage3",
|
72 |
+
"stage4"
|
73 |
+
],
|
74 |
+
"torch_dtype": "float32",
|
75 |
+
"transformers_version": "4.33.3"
|
76 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd1d4d29e880f843f514015b07c66d302af042af5d0088707b3705742697f204
|
3 |
+
size 170777554
|
train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"train_loss": 0.8447013873291016,
|
4 |
+
"train_runtime": 30071.7313,
|
5 |
+
"train_samples_per_second": 106.412,
|
6 |
+
"train_steps_per_second": 1.663
|
7 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41a8b6595209f99e95d82d5be5f4d68c3f2882e183744139451fd511f5753b31
|
3 |
+
size 4600
|