|
--- |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
- google/fleurs |
|
- bayartsogt/ulaanbal-v0 |
|
- bayartsogt/youtube-mongolian-v1 |
|
metrics: |
|
- wer |
|
- cer |
|
model-index: |
|
- name: whisper-small-mn-8-bayartsogt |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 11.0 |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: mn |
|
split: test |
|
args: |
|
language: mn |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 26.518461874590344 |
|
- name: Cer |
|
type: cer |
|
value: 9.46811616603981 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-small-mn-8 |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2421 |
|
- Wer: 26.5185 |
|
- Cer: 9.4681 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 15000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| |
|
| 0.3717 | 0.35 | 1000 | 0.4004 | 46.9576 | 16.9664 | |
|
| 0.286 | 0.69 | 2000 | 0.3129 | 37.3935 | 13.5504 | |
|
| 0.2287 | 1.04 | 3000 | 0.2768 | 33.1931 | 11.7806 | |
|
| 0.2257 | 1.39 | 4000 | 0.2590 | 30.7243 | 11.0232 | |
|
| 0.2029 | 1.73 | 5000 | 0.2428 | 29.2003 | 10.4144 | |
|
| 0.1691 | 2.08 | 6000 | 0.2408 | 28.4357 | 10.0306 | |
|
| 0.1626 | 2.43 | 7000 | 0.2369 | 28.0588 | 10.0486 | |
|
| 0.1588 | 2.77 | 8000 | 0.2321 | 27.2340 | 9.6819 | |
|
| 0.1271 | 3.12 | 9000 | 0.2349 | 26.8407 | 9.5574 | |
|
| 0.1263 | 3.47 | 10000 | 0.2356 | 27.1630 | 9.6519 | |
|
| 0.1314 | 3.81 | 11000 | 0.2340 | 26.5567 | 9.4278 | |
|
| 0.1062 | 4.16 | 12000 | 0.2390 | 26.6332 | 9.5162 | |
|
| 0.1081 | 4.5 | 13000 | 0.2398 | 26.5840 | 9.5085 | |
|
| 0.1033 | 4.85 | 14000 | 0.2402 | 26.7096 | 9.4801 | |
|
| 0.097 | 5.2 | 15000 | 0.2421 | 26.5185 | 9.4681 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.7.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|