bayartsogt's picture
update model card README.md
360bf2f
|
raw
history blame
1.52 kB
metadata
language:
  - mn
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-base-ner-demo
    results: []

roberta-base-ner-demo

This model is a fine-tuned version of bayartsogt/mongolian-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0833
  • Precision: 0.8885
  • Recall: 0.9070
  • F1: 0.8976
  • Accuracy: 0.9752

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1666 1.0 477 0.0833 0.8885 0.9070 0.8976 0.9752

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1