bert-pos / README.md
baxi099's picture
Training complete
4473ec8 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-pos
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: validation
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.9200934692009347
          - name: Recall
            type: recall
            value: 0.9266564766965087
          - name: F1
            type: f1
            value: 0.9233633110917706
          - name: Accuracy
            type: accuracy
            value: 0.9292694413374933

bert-pos

This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3112
  • Precision: 0.9201
  • Recall: 0.9267
  • F1: 0.9234
  • Accuracy: 0.9293

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1761 1.0 1756 0.3112 0.9201 0.9267 0.9234 0.9293

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3