bavest commited on
Commit
ece4efe
1 Parent(s): e93c4ab

Update usage

Browse files
Files changed (1) hide show
  1. README.md +6 -2
README.md CHANGED
@@ -60,12 +60,14 @@ Quantization parameters are controlled from the `BitsandbytesConfig`
60
  quantization datatypes `fp4` (four bit float) and `nf4` (normal four bit float). The latter is theoretically optimal
61
  for normally distributed weights and we recommend using `nf4`.
62
 
 
63
  ```python
64
  import torch
65
  from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
66
 
 
67
  model = AutoModelForCausalLM.from_pretrained(
68
- pretrained_model_name_or_path='bavest/fin-llama',
69
  load_in_4bit=True,
70
  device_map='auto',
71
  torch_dtype=torch.bfloat16,
@@ -77,7 +79,7 @@ model = AutoModelForCausalLM.from_pretrained(
77
  ),
78
  )
79
 
80
- tokenizer = AutoTokenizer.from_pretrained(model_path)
81
 
82
  question = "What is the market cap of apple?"
83
  input = "" # context if needed
@@ -95,6 +97,7 @@ with torch.no_grad():
95
  do_sample=True,
96
  top_p=0.9,
97
  temperature=0.8,
 
98
  )
99
 
100
  generated_text = tokenizer.decode(
@@ -102,6 +105,7 @@ generated_text = tokenizer.decode(
102
  )
103
  ```
104
 
 
105
  ## Dataset for FIN-LLAMA
106
 
107
  The dataset is released under bigscience-openrail-m.
 
60
  quantization datatypes `fp4` (four bit float) and `nf4` (normal four bit float). The latter is theoretically optimal
61
  for normally distributed weights and we recommend using `nf4`.
62
 
63
+
64
  ```python
65
  import torch
66
  from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
67
 
68
+ pretrained_model_name_or_path = "bavest/fin-llama-33b-merge"
69
  model = AutoModelForCausalLM.from_pretrained(
70
+ pretrained_model_name_or_path=pretrained_model_name_or_path,
71
  load_in_4bit=True,
72
  device_map='auto',
73
  torch_dtype=torch.bfloat16,
 
79
  ),
80
  )
81
 
82
+ tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
83
 
84
  question = "What is the market cap of apple?"
85
  input = "" # context if needed
 
97
  do_sample=True,
98
  top_p=0.9,
99
  temperature=0.8,
100
+ max_length=128
101
  )
102
 
103
  generated_text = tokenizer.decode(
 
105
  )
106
  ```
107
 
108
+
109
  ## Dataset for FIN-LLAMA
110
 
111
  The dataset is released under bigscience-openrail-m.