basilepp19 commited on
Commit
79c9b21
1 Parent(s): 6de34d7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md CHANGED
@@ -1,3 +1,44 @@
1
  ---
2
  license: bigscience-bloom-rail-1.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: bigscience-bloom-rail-1.0
3
+ language:
4
+ - it
5
  ---
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+ This model is obtained by fine-tuning the BLOOM model over two Italian classification task prompts without language adaptation. To deal with this step, we decided to
11
+ use data from two well-known EVALITA tasks: AMI2020 (misogyny detection) and HASPEEDE-v2-2020 (hate-speech detection).
12
+
13
+ ## Model Details
14
+
15
+ ### Model Description
16
+
17
+ The BLOOM model is directly fine-tuned over two Italian classification task prompts using two well-known EVALITA tasks: AMI2020 (misogyny detection)
18
+ and HASPEEDE-v2-2020 (hate-speech detection).
19
+
20
+ We transformed the training data of the two tasks into an LLM prompt following a template. For the AMI task, we used the following template:
21
+
22
+ *instruction: Nel testo seguente si esprime odio contro le donne? Rispondi sì o no., input: \<text\>, output: \<sì/no\>.*
23
+
24
+ Similarly, for HASPEEDE we used:
25
+
26
+ *instruction: “Il testo seguente incita all’odio? Rispondi sì o no., input: \<text\>, output: \<sì/no\>.*
27
+
28
+ To fill these templates, we mapped the label "1" with the word "sì" and the label "0" with the word "no", \<text\> is just the sentence from the
29
+ dataset to classify.
30
+
31
+ To fine-tune the model, we use the script available here: https://github.com/hyintell/BLOOM-fine-tuning/tree/main
32
+
33
+ - **Developed by:** Pierpaolo Basile, Pierluigi Cassotti, Marco Polignano, Lucia Siciliani, Giovanni Semeraro. Department of Computer Science, University of Bari Aldo Moro, Italy
34
+ - **Model type:** BLOOM
35
+ - **Language(s) (NLP):** Italian
36
+ - **License:** BigScience BLOOM RAIL 1.0
37
+
38
+ ## Citation
39
+
40
+ Pierpaolo Basile, Pierluigi Cassotti, Marco Polignano, Lucia Siciliani, Giovanni Semeraro. On the impact of Language Adaptation for Large Language Models: A
41
+ case study for the Italian language using only open resources. Proceedings of the Ninth Italian Conference on Computational Linguistics (CLiC-it 2023).
42
+
43
+
44
+