bartpotrykus
commited on
Commit
•
cc480d3
1
Parent(s):
4608856
3m training steps
Browse files- 3m-ppo-LunarLander-v2.zip +3 -0
- 3m-ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- 3m-ppo-LunarLander-v2/data +91 -0
- 3m-ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- 3m-ppo-LunarLander-v2/policy.pth +3 -0
- 3m-ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- 3m-ppo-LunarLander-v2/system_info.txt +7 -0
- README.md +1 -1
- config.json +1 -1
- results.json +1 -1
3m-ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a582098f7cf80135ad679267f9afb803b2488a0bd80bd73519dc38dd52f5bc8
|
3 |
+
size 146150
|
3m-ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
3m-ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4f1d6cf70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4f1d71040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4f1d710d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4f1d71160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd4f1d711f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd4f1d71280>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4f1d71310>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd4f1d713a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4f1d71430>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4f1d714c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4f1d71550>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd4f1d66d80>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 3014656,
|
46 |
+
"_total_timesteps": 3000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671546026588620455,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": null,
|
58 |
+
"_last_episode_starts": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_original_obs": null,
|
63 |
+
"_episode_num": 0,
|
64 |
+
"use_sde": false,
|
65 |
+
"sde_sample_freq": -1,
|
66 |
+
"_current_progress_remaining": -0.004885333333333408,
|
67 |
+
"ep_info_buffer": {
|
68 |
+
":type:": "<class 'collections.deque'>",
|
69 |
+
":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5NcPsUGKcUCUhpRSlIwBbJRL3IwBdJRHQKj/9974SHx1fZQoaAZoCWgPQwhTW+og70hxQJSGlFKUaBVL32gWR0CpABC1AqusdX2UKGgGaAloD0MI93e2R6+WckCUhpRSlGgVS/FoFkdAqQBSXrt3OnV9lChoBmgJaA9DCCYYzjUM+nJAlIaUUpRoFUvwaBZHQKkAkQYk3S91fZQoaAZoCWgPQwii8UQQ50tSQJSGlFKUaBVLoGgWR0CpAJ5PuXu3dX2UKGgGaAloD0MIqI/AH34ockCUhpRSlGgVS/VoFkdAqQDaiCaqj3V9lChoBmgJaA9DCHQK8rPRG3NAlIaUUpRoFUvhaBZHQKkA+rSVnmJ1fZQoaAZoCWgPQwijBtMwvJdyQJSGlFKUaBVLx2gWR0CpAR9PDYRNdX2UKGgGaAloD0MIP8dHizOWcUCUhpRSlGgVS/toFkdAqQEw0Mw1znV9lChoBmgJaA9DCFFNSdbhVnJAlIaUUpRoFUv6aBZHQKkBYgL7XQN1fZQoaAZoCWgPQwiRgNHlzZVUQJSGlFKUaBVLzmgWR0CpAWuCwr1/dX2UKGgGaAloD0MIgCiYMQWPb0CUhpRSlGgVS9NoFkdAqQIEgr6LwXV9lChoBmgJaA9DCMoXtJCAD3NAlIaUUpRoFUvtaBZHQKkCFYLb5/N1fZQoaAZoCWgPQwjqlh3i33ZxQJSGlFKUaBVL4GgWR0CpAhmb1AZ9dX2UKGgGaAloD0MI9Kj4v2PgcUCUhpRSlGgVS8NoFkdAqQIrJSzgM3V9lChoBmgJaA9DCJ7RViVRbXFAlIaUUpRoFUvWaBZHQKkCmhIOH311fZQoaAZoCWgPQwh7Z7RViWlyQJSGlFKUaBVLzWgWR0CpAtUTtb9qdX2UKGgGaAloD0MIumddo2XccUCUhpRSlGgVS+toFkdAqQL8eGO+7HV9lChoBmgJaA9DCEW4yagy0lNAlIaUUpRoFUuWaBZHQKkDQ+Ofdyl1fZQoaAZoCWgPQwjFPZY+9J1vQJSGlFKUaBVL2WgWR0CpA0d/SYw7dX2UKGgGaAloD0MIbVZ9rrbGcUCUhpRSlGgVS95oFkdAqQNKHTI/7nV9lChoBmgJaA9DCJUsJ6F0gHNAlIaUUpRoFUvNaBZHQKkDgKG+K0l1fZQoaAZoCWgPQwiPVUrP9L1wQJSGlFKUaBVL2WgWR0CpA4PaL4vfdX2UKGgGaAloD0MItmXAWUoNcECUhpRSlGgVS9poFkdAqQPMT8HfM3V9lChoBmgJaA9DCMcvvJLkRUdAlIaUUpRoFUuKaBZHQKkD3/d69kB1fZQoaAZoCWgPQwjU8C2sGxVMQJSGlFKUaBVLnWgWR0CpBAhJZntfdX2UKGgGaAloD0MI5zdMNAjVc0CUhpRSlGgVS+NoFkdAqQQ9DjR2KXV9lChoBmgJaA9DCG/x8J6DOXNAlIaUUpRoFUv3aBZHQKkFHxaPjn51fZQoaAZoCWgPQwjkamRXmnNxQJSGlFKUaBVL9mgWR0CpBTJaiblSdX2UKGgGaAloD0MI9bpFYKw0cUCUhpRSlGgVS8RoFkdAqRaQ+4b0e3V9lChoBmgJaA9DCKRwPQoXu3NAlIaUUpRoFUvlaBZHQKkWkR/3Fkx1fZQoaAZoCWgPQwi8lpAPuopxQJSGlFKUaBVLxGgWR0CpFpiU5dWydX2UKGgGaAloD0MIdt1bkRitcECUhpRSlGgVS8poFkdAqRaqFCb+cnV9lChoBmgJaA9DCNR8lXwsynFAlIaUUpRoFUvgaBZHQKkWqk2xY7t1fZQoaAZoCWgPQwisjEY+L1RxQJSGlFKUaBVNBAFoFkdAqRa/uTibUnV9lChoBmgJaA9DCLr2BfSCo3FAlIaUUpRoFUvIaBZHQKkXNSUC7sh1fZQoaAZoCWgPQwj3yycrRslwQJSGlFKUaBVL5WgWR0CpF0AkcCHRdX2UKGgGaAloD0MIQIaOHZR8ckCUhpRSlGgVS+RoFkdAqRdAakyk9HV9lChoBmgJaA9DCMvZO6PtFHBAlIaUUpRoFUvLaBZHQKkXTjbSJCV1fZQoaAZoCWgPQwhFveDT3DtxQJSGlFKUaBVLu2gWR0CpF3KMefZmdX2UKGgGaAloD0MIVG8NbFWKcUCUhpRSlGgVS9toFkdAqRed+/gzg3V9lChoBmgJaA9DCIfD0sAP6nFAlIaUUpRoFUvSaBZHQKkYjlJYkmh1fZQoaAZoCWgPQwipa+196hlzQJSGlFKUaBVL7mgWR0CpGQJtzjm0dX2UKGgGaAloD0MIhzHp7+WRckCUhpRSlGgVS81oFkdAqRlhtzjm0XV9lChoBmgJaA9DCK9cb5spjnJAlIaUUpRoFUvcaBZHQKkZfssQNCt1fZQoaAZoCWgPQwi63GCowylvQJSGlFKUaBVL42gWR0CpGX8V58jSdX2UKGgGaAloD0MIRIfAkYATcECUhpRSlGgVS/toFkdAqRn1Y8uBc3V9lChoBmgJaA9DCH2SO2zirnFAlIaUUpRoFU0EAWgWR0CpGgRk3CKrdX2UKGgGaAloD0MISDMWTed+cUCUhpRSlGgVS9VoFkdAqRoTO1OTJXV9lChoBmgJaA9DCF+YTBUMiHBAlIaUUpRoFUvZaBZHQKkaMyquKXR1fZQoaAZoCWgPQwiA7suZ7cpxQJSGlFKUaBVL4WgWR0CpGj7LMcIadX2UKGgGaAloD0MIvDydKwpqcUCUhpRSlGgVS99oFkdAqRp6lLvkR3V9lChoBmgJaA9DCP2/6siRw3NAlIaUUpRoFU0nAWgWR0CpGn1Drqt6dX2UKGgGaAloD0MIr1sExnowcUCUhpRSlGgVTQQBaBZHQKkarKDkELZ1fZQoaAZoCWgPQwihvI+j+ahwQJSGlFKUaBVL52gWR0CpG9vsZ5zHdX2UKGgGaAloD0MIymq6nmg1ckCUhpRSlGgVTUUBaBZHQKkcJiT+vQp1fZQoaAZoCWgPQwjQXn08NCRwQJSGlFKUaBVLwWgWR0CpHEgJ1JUYdX2UKGgGaAloD0MImbhVEMP7cUCUhpRSlGgVS+JoFkdAqRxIegctG3V9lChoBmgJaA9DCFQ2rKks+nFAlIaUUpRoFUvTaBZHQKkcbNRFZxJ1fZQoaAZoCWgPQwgo84++SVdyQJSGlFKUaBVL0mgWR0CpHIWBreqJdX2UKGgGaAloD0MI51QyABSQcECUhpRSlGgVS9BoFkdAqRztX3g1nHV9lChoBmgJaA9DCOaxZmSQDFNAlIaUUpRoFUvJaBZHQKkdHnVXmvJ1fZQoaAZoCWgPQwj2XRH8r3pzQJSGlFKUaBVL4mgWR0CpHT9Sde6adX2UKGgGaAloD0MIG70aoPSXcECUhpRSlGgVS+FoFkdAqR1Kmbb1y3V9lChoBmgJaA9DCBjt8UK6IGdAlIaUUpRoFU3oA2gWR0CpHWnZ9NN8dX2UKGgGaAloD0MIDhMNUvBXcUCUhpRSlGgVS+ZoFkdAqR17bg0j1XV9lChoBmgJaA9DCLWLaaZ7X3FAlIaUUpRoFUvaaBZHQKkdkcZLqUx1fZQoaAZoCWgPQwgq499n3BJxQJSGlFKUaBVL5WgWR0CpHbSP+4smdX2UKGgGaAloD0MI9DehEMHVcUCUhpRSlGgVS+VoFkdAqR3ejM3ZPHV9lChoBmgJaA9DCFjFG5mHE3FAlIaUUpRoFUvbaBZHQKkezdcB2fV1fZQoaAZoCWgPQwjUKCSZ1ddvQJSGlFKUaBVLwGgWR0CpHwhzvJA/dX2UKGgGaAloD0MIi6VIvhIGZUCUhpRSlGgVTegDaBZHQKkfJmzSkTJ1fZQoaAZoCWgPQwiXcr7Ye1dxQJSGlFKUaBVL42gWR0CpHy2QOnVHdX2UKGgGaAloD0MIuMzpstg7cUCUhpRSlGgVS95oFkdAqR82QMhHLHV9lChoBmgJaA9DCMzwn27g1nJAlIaUUpRoFUvuaBZHQKkfZKf4AS51fZQoaAZoCWgPQwithy8TBedyQJSGlFKUaBVL5WgWR0CpH2mEGqxUdX2UKGgGaAloD0MISZ2AJsIcSUCUhpRSlGgVS5loFkdAqR98cuJ1q3V9lChoBmgJaA9DCMa+ZOMB/nNAlIaUUpRoFUvhaBZHQKkfzK3/gix1fZQoaAZoCWgPQwiV1t8SAHZxQJSGlFKUaBVL1mgWR0CpH9LYwqRVdX2UKGgGaAloD0MI1/uNdpzMcUCUhpRSlGgVS9ZoFkdAqSASN6w+uHV9lChoBmgJaA9DCAKfH0bISXBAlIaUUpRoFUvoaBZHQKkgMafBeol1fZQoaAZoCWgPQwgL7ZxmQaVwQJSGlFKUaBVL9mgWR0CpIIzAeq7zdX2UKGgGaAloD0MInzvB/qtpcUCUhpRSlGgVS/BoFkdAqSDia7VawHV9lChoBmgJaA9DCBLBOLg0qXBAlIaUUpRoFUv/aBZHQKkg5Ks+3Yt1fZQoaAZoCWgPQwggls0cErBwQJSGlFKUaBVLyWgWR0CpIbbcfvF4dX2UKGgGaAloD0MIc77Ye7E5ckCUhpRSlGgVS89oFkdAqSG71dxAB3V9lChoBmgJaA9DCJgZNsq6RHNAlIaUUpRoFUvraBZHQKkhyl+EytV1fZQoaAZoCWgPQwinrnyWp71xQJSGlFKUaBVL3WgWR0CpIdZE+gUUdX2UKGgGaAloD0MIeHsQAjI4cUCUhpRSlGgVS8doFkdAqSHv7gsK9nV9lChoBmgJaA9DCPcA3Zezb29AlIaUUpRoFUvKaBZHQKkh9bhWHUN1fZQoaAZoCWgPQwiYhXZOswFwQJSGlFKUaBVNeAFoFkdAqSIBDPWxyHV9lChoBmgJaA9DCMYzaOhfzXFAlIaUUpRoFUvqaBZHQKkiG4I8hcJ1fZQoaAZoCWgPQwi0dtuF5oNxQJSGlFKUaBVL22gWR0CpIjnnuAqedX2UKGgGaAloD0MI4UIewY3RcUCUhpRSlGgVS91oFkdAqSKNh1DBuXV9lChoBmgJaA9DCBkCgGOPhHFAlIaUUpRoFUvhaBZHQKkik4lQdjp1fZQoaAZoCWgPQwiQMuIC0HpvQJSGlFKUaBVL4GgWR0CpI1HZsbeedX2UKGgGaAloD0MIXyaKkDqncUCUhpRSlGgVTQMBaBZHQKkjaVxCIDZ1fZQoaAZoCWgPQwjK372jBk5xQJSGlFKUaBVNDAFoFkdAqSNpVlwtKHV9lChoBmgJaA9DCH3O3a7XTHBAlIaUUpRoFUvbaBZHQKkjmClrM1V1fZQoaAZoCWgPQwgBofXwJVRxQJSGlFKUaBVL5GgWR0CpI7ApazNVdWUu"
|
70 |
+
},
|
71 |
+
"ep_success_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
74 |
+
},
|
75 |
+
"_n_updates": 736,
|
76 |
+
"n_steps": 1024,
|
77 |
+
"gamma": 0.999,
|
78 |
+
"gae_lambda": 0.98,
|
79 |
+
"ent_coef": 0.01,
|
80 |
+
"vf_coef": 0.5,
|
81 |
+
"max_grad_norm": 0.5,
|
82 |
+
"batch_size": 64,
|
83 |
+
"n_epochs": 4,
|
84 |
+
"clip_range": {
|
85 |
+
":type:": "<class 'function'>",
|
86 |
+
":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
87 |
+
},
|
88 |
+
"clip_range_vf": null,
|
89 |
+
"normalize_advantage": true,
|
90 |
+
"target_kl": null
|
91 |
+
}
|
3m-ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df08437c86da6b50cca53c74c11698ac116263aadc25e2a147b474ec76d4eebc
|
3 |
+
size 88057
|
3m-ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be2509134844301f5dec8a8573acace93945ccd6f4336d7bcdb2c842ce07cd18
|
3 |
+
size 43201
|
3m-ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
3m-ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Nov 23 01:01:46 UTC 2022
|
2 |
+
Python: 3.8.10
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.1+cu117
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.23.5
|
7 |
+
Gym: 0.21.0
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 275.08 +/- 16.59
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6df99c8f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6df99cd040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6df99cd0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6df99cd160>", "_build": "<function ActorCriticPolicy._build at 0x7f6df99cd1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6df99cd280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6df99cd310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6df99cd3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6df99cd430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6df99cd4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6df99cd550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6df99c1d80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671541642684015405, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjjo6rsYBZECUhpRSlIwBbJRN6AOMAXSUR0CRe/+ueSSvdX2UKGgGaAloD0MIQ1iNJazVYUCUhpRSlGgVTegDaBZHQJGBD/FR51N1fZQoaAZoCWgPQwgLRiV1AmhaQJSGlFKUaBVN6ANoFkdAkYHCM1jy4HV9lChoBmgJaA9DCPvL7snDIFlAlIaUUpRoFU3oA2gWR0CRgfaNdZ7pdX2UKGgGaAloD0MI/pyC/GyJXECUhpRSlGgVTegDaBZHQJGCfLyMDOl1fZQoaAZoCWgPQwj034PXLrFEQJSGlFKUaBVL2GgWR0CRg7chkiD/dX2UKGgGaAloD0MIeO49XPJ7YECUhpRSlGgVTegDaBZHQJGF8tcv/R51fZQoaAZoCWgPQwi9qrNa4EBkQJSGlFKUaBVN6ANoFkdAkYanivPkaXV9lChoBmgJaA9DCMU9lj704mNAlIaUUpRoFU3oA2gWR0CRjfXT3IuHdX2UKGgGaAloD0MIxeOiWkQ0YkCUhpRSlGgVTegDaBZHQJGQyYtxuKp1fZQoaAZoCWgPQwgL1c3FX0tjQJSGlFKUaBVN6ANoFkdAkZHSsKb8WXV9lChoBmgJaA9DCNrGn6hsvENAlIaUUpRoFU0sAWgWR0CRklnHNorXdX2UKGgGaAloD0MIUMWNW0zMZUCUhpRSlGgVTegDaBZHQJGT+grYoRZ1fZQoaAZoCWgPQwgUIXU7+0xlQJSGlFKUaBVN6ANoFkdAkZTBPCVKPHV9lChoBmgJaA9DCMCy0qQUalxAlIaUUpRoFU3oA2gWR0CRmwsZpBX0dX2UKGgGaAloD0MIUI2XbhIIYkCUhpRSlGgVTegDaBZHQJHIySV4X411fZQoaAZoCWgPQwgmrI2xEzVgQJSGlFKUaBVN6ANoFkdAkcx4MBp5/3V9lChoBmgJaA9DCHKndLD+22BAlIaUUpRoFU3oA2gWR0CR0krVvuPWdX2UKGgGaAloD0MIgzP4+0VyYUCUhpRSlGgVTegDaBZHQJHXW/336AR1fZQoaAZoCWgPQwjD0ytlmbVkQJSGlFKUaBVN6ANoFkdAkdgNedCmdnV9lChoBmgJaA9DCDPEsS5uemBAlIaUUpRoFU3oA2gWR0CR2EQEpy6udX2UKGgGaAloD0MIttjts0qIYECUhpRSlGgVTegDaBZHQJHYzDGcWj51fZQoaAZoCWgPQwjwT6kS5bdkQJSGlFKUaBVN6ANoFkdAkdyK7yxzJnV9lChoBmgJaA9DCPxwkBDlFmRAlIaUUpRoFU3oA2gWR0CR3T0Nz8xcdX2UKGgGaAloD0MItHOaBdpcXECUhpRSlGgVTegDaBZHQJHkSaUiY9h1fZQoaAZoCWgPQwiXrIpwkzdNQJSGlFKUaBVNAAFoFkdAkeTYn8baRXV9lChoBmgJaA9DCO2ZJQFqu2BAlIaUUpRoFU3oA2gWR0CR5vWJ79hrdX2UKGgGaAloD0MIXFmis8zQZUCUhpRSlGgVTegDaBZHQJHn7MNc4YJ1fZQoaAZoCWgPQwiERrBx/eVmQJSGlFKUaBVN6ANoFkdAkehiBXjlxXV9lChoBmgJaA9DCJiIt86/P2JAlIaUUpRoFU3oA2gWR0CR6brRjSXudX2UKGgGaAloD0MIx0yiXnBIZECUhpRSlGgVTegDaBZHQJHqX1ZkkKN1fZQoaAZoCWgPQwghj+BGyptlQJSGlFKUaBVN6ANoFkdAke+G/SH/LnV9lChoBmgJaA9DCI6VmGclvmRAlIaUUpRoFU3oA2gWR0CSHRkjX4CZdX2UKGgGaAloD0MIOKJ71rU/Y0CUhpRSlGgVTegDaBZHQJIgiERJ2+x1fZQoaAZoCWgPQwgS2QdZlu1gQJSGlFKUaBVN6ANoFkdAkiYBChN/OXV9lChoBmgJaA9DCKBwdmuZ4lpAlIaUUpRoFU3oA2gWR0CSKuOwxFiKdX2UKGgGaAloD0MImNwostayZUCUhpRSlGgVTegDaBZHQJIriGGmDUV1fZQoaAZoCWgPQwiLxtrf2UhhQJSGlFKUaBVN6ANoFkdAkiu8/t6X0HV9lChoBmgJaA9DCH5XBP/bmWNAlIaUUpRoFU3oA2gWR0CSL/hLoOhCdX2UKGgGaAloD0MIzy7f+rA+ZECUhpRSlGgVTegDaBZHQJIwwIzFdcB1fZQoaAZoCWgPQwiMaaZ7nfJeQJSGlFKUaBVN6ANoFkdAkjh6be/HpHV9lChoBmgJaA9DCE7udyiKuWVAlIaUUpRoFU3oA2gWR0CSOQkkKNQ1dX2UKGgGaAloD0MI4dOcvMj4bkCUhpRSlGgVTSMDaBZHQJI68vrWy1N1fZQoaAZoCWgPQwg6z9iXbKtaQJSGlFKUaBVN6ANoFkdAkjsWfkFOf3V9lChoBmgJaA9DCKNbr+nB7mFAlIaUUpRoFU3oA2gWR0CSO+hSLqD9dX2UKGgGaAloD0MIvK5fsBusQECUhpRSlGgVS/JoFkdAkjv+9OARTXV9lChoBmgJaA9DCGNhiJy+QGBAlIaUUpRoFU3oA2gWR0CSPFQNCqp+dX2UKGgGaAloD0MI5GVNLPCFGkCUhpRSlGgVS/VoFkdAkjzDOLR8dHV9lChoBmgJaA9DCMcOKnEdfGZAlIaUUpRoFU3oA2gWR0CSPYY5T6zmdX2UKGgGaAloD0MImWclrXhuYUCUhpRSlGgVTegDaBZHQJI+FH/cWTJ1fZQoaAZoCWgPQwjH9IQlHg5kQJSGlFKUaBVN6ANoFkdAkm9gQ+UyHnV9lChoBmgJaA9DCPqcu12vfWZAlIaUUpRoFU3oA2gWR0CScvA0sOG1dX2UKGgGaAloD0MIAWn/A6yyYkCUhpRSlGgVTegDaBZHQJJ4mlabF0h1fZQoaAZoCWgPQwgCEk2giERjQJSGlFKUaBVN6ANoFkdAkn3CkCV8kXV9lChoBmgJaA9DCEbRAx+DVWhAlIaUUpRoFU3oA2gWR0CSfnXhfjS5dX2UKGgGaAloD0MIqz5XWzGHZUCUhpRSlGgVTegDaBZHQJJ+rutwJgN1fZQoaAZoCWgPQwhTWn9LAMtQQJSGlFKUaBVL22gWR0CSiUb961LKdX2UKGgGaAloD0MIbvse9Vf+ZUCUhpRSlGgVTegDaBZHQJKMLpOerdZ1fZQoaAZoCWgPQwgfgxWnWthjQJSGlFKUaBVN6ANoFkdAkozNWU8mr3V9lChoBmgJaA9DCFOVtrjGBGNAlIaUUpRoFU3oA2gWR0CSjto/zJ6qdX2UKGgGaAloD0MIqcDJNvBJZUCUhpRSlGgVTegDaBZHQJKPAb70nPV1fZQoaAZoCWgPQwgmxjL9ErhYQJSGlFKUaBVN6ANoFkdAko/9y1eBx3V9lChoBmgJaA9DCA3BcRk3+lxAlIaUUpRoFU3oA2gWR0CSkBa+vhZRdX2UKGgGaAloD0MIOe0pOSe/X0CUhpRSlGgVTegDaBZHQJKQc9zOopB1fZQoaAZoCWgPQwg4LA38qDZeQJSGlFKUaBVN6ANoFkdAkpDx/iHZb3V9lChoBmgJaA9DCN0J9l/nWWRAlIaUUpRoFU3oA2gWR0CSkbnUlRgrdX2UKGgGaAloD0MI1owMcpdEYECUhpRSlGgVTegDaBZHQJKSSohpxm11fZQoaAZoCWgPQwgLtaZ5x8VdQJSGlFKUaBVN6ANoFkdAksRl18stkHV9lChoBmgJaA9DCG2NCMbBc2FAlIaUUpRoFU3oA2gWR0CSyDd/8VHndX2UKGgGaAloD0MIHlIMkOg6ZkCUhpRSlGgVTegDaBZHQJLOa9kBjnV1fZQoaAZoCWgPQwibVZ+rLcpjQJSGlFKUaBVN6ANoFkdAktS8ujASF3V9lChoBmgJaA9DCNfep6pQ3WRAlIaUUpRoFU3oA2gWR0CS1Pr0rbxmdX2UKGgGaAloD0MIEvjDz3+dYkCUhpRSlGgVTegDaBZHQJLgfEyckMV1fZQoaAZoCWgPQwiEZAETuEZjQJSGlFKUaBVN6ANoFkdAkuO04zabnXV9lChoBmgJaA9DCI6xE14CVmNAlIaUUpRoFU3oA2gWR0CS5FnjyWiUdX2UKGgGaAloD0MIl/260x1KYECUhpRSlGgVTegDaBZHQJLmdbMX7+F1fZQoaAZoCWgPQwg66ui4GiZiQJSGlFKUaBVN6ANoFkdAkuajR2KVIXV9lChoBmgJaA9DCClBf6FHYlxAlIaUUpRoFU3oA2gWR0CS55ikfs/qdX2UKGgGaAloD0MI/mDguXeAYUCUhpRSlGgVTegDaBZHQJLnstXgccV1fZQoaAZoCWgPQwgZO+ElOKNfQJSGlFKUaBVN6ANoFkdAkugPe+Eh7nV9lChoBmgJaA9DCDpdFhMbMWJAlIaUUpRoFU3oA2gWR0CS6IVT72tddX2UKGgGaAloD0MIZQETuHVTY0CUhpRSlGgVTegDaBZHQJLpW2qkuYh1fZQoaAZoCWgPQwglea7vwyphQJSGlFKUaBVN6ANoFkdAkunwAU+LWXV9lChoBmgJaA9DCF2pZ0Eoh05AlIaUUpRoFUvlaBZHQJLwI7fYSQJ1fZQoaAZoCWgPQwi1UZ0O5PthQJSGlFKUaBVN6ANoFkdAkxuN0eU6gnV9lChoBmgJaA9DCFggelImMmNAlIaUUpRoFU3oA2gWR0CTHtdGAkLQdX2UKGgGaAloD0MIbJbLRudHYUCUhpRSlGgVTegDaBZHQJMkXBzmwJR1fZQoaAZoCWgPQwgZOnZQCT1jQJSGlFKUaBVN6ANoFkdAkynyjcmBv3V9lChoBmgJaA9DCBy1wvQ97mFAlIaUUpRoFU3oA2gWR0CTKinJ1aGIdX2UKGgGaAloD0MI+3lTkYoUZ0CUhpRSlGgVTegDaBZHQJM0lYfW+XZ1fZQoaAZoCWgPQwj0wwjhUQhkQJSGlFKUaBVN6ANoFkdAkzeH58BuGnV9lChoBmgJaA9DCGmKAKf3t2ZAlIaUUpRoFU3oA2gWR0CTOCeU6gdwdX2UKGgGaAloD0MIWtk+5C3wVUCUhpRSlGgVTegDaBZHQJM6XlQuVX51fZQoaAZoCWgPQwiJfQIoRvxiQJSGlFKUaBVN6ANoFkdAkztZ2U0N0HV9lChoBmgJaA9DCJKtLqeEZmRAlIaUUpRoFU3oA2gWR0CTO3REnb7CdX2UKGgGaAloD0MIon+CixVkZUCUhpRSlGgVTegDaBZHQJM72DdxhlV1fZQoaAZoCWgPQwiH+IctPZZmQJSGlFKUaBVN6ANoFkdAkzxUGeMAFXV9lChoBmgJaA9DCBU5RNyczGFAlIaUUpRoFU3oA2gWR0CTPTQWvbGndX2UKGgGaAloD0MIoWgewKJuZ0CUhpRSlGgVTegDaBZHQJM90BGQSzx1fZQoaAZoCWgPQwj18dB3t5peQJSGlFKUaBVN6ANoFkdAk0RJlSS/03VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4f1d6cf70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4f1d71040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4f1d710d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4f1d71160>", "_build": "<function ActorCriticPolicy._build at 0x7fd4f1d711f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd4f1d71280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4f1d71310>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd4f1d713a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4f1d71430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4f1d714c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4f1d71550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd4f1d66d80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671546026588620455, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5NcPsUGKcUCUhpRSlIwBbJRL3IwBdJRHQKj/9974SHx1fZQoaAZoCWgPQwhTW+og70hxQJSGlFKUaBVL32gWR0CpABC1AqusdX2UKGgGaAloD0MI93e2R6+WckCUhpRSlGgVS/FoFkdAqQBSXrt3OnV9lChoBmgJaA9DCCYYzjUM+nJAlIaUUpRoFUvwaBZHQKkAkQYk3S91fZQoaAZoCWgPQwii8UQQ50tSQJSGlFKUaBVLoGgWR0CpAJ5PuXu3dX2UKGgGaAloD0MIqI/AH34ockCUhpRSlGgVS/VoFkdAqQDaiCaqj3V9lChoBmgJaA9DCHQK8rPRG3NAlIaUUpRoFUvhaBZHQKkA+rSVnmJ1fZQoaAZoCWgPQwijBtMwvJdyQJSGlFKUaBVLx2gWR0CpAR9PDYRNdX2UKGgGaAloD0MIP8dHizOWcUCUhpRSlGgVS/toFkdAqQEw0Mw1znV9lChoBmgJaA9DCFFNSdbhVnJAlIaUUpRoFUv6aBZHQKkBYgL7XQN1fZQoaAZoCWgPQwiRgNHlzZVUQJSGlFKUaBVLzmgWR0CpAWuCwr1/dX2UKGgGaAloD0MIgCiYMQWPb0CUhpRSlGgVS9NoFkdAqQIEgr6LwXV9lChoBmgJaA9DCMoXtJCAD3NAlIaUUpRoFUvtaBZHQKkCFYLb5/N1fZQoaAZoCWgPQwjqlh3i33ZxQJSGlFKUaBVL4GgWR0CpAhmb1AZ9dX2UKGgGaAloD0MI9Kj4v2PgcUCUhpRSlGgVS8NoFkdAqQIrJSzgM3V9lChoBmgJaA9DCJ7RViVRbXFAlIaUUpRoFUvWaBZHQKkCmhIOH311fZQoaAZoCWgPQwh7Z7RViWlyQJSGlFKUaBVLzWgWR0CpAtUTtb9qdX2UKGgGaAloD0MIumddo2XccUCUhpRSlGgVS+toFkdAqQL8eGO+7HV9lChoBmgJaA9DCEW4yagy0lNAlIaUUpRoFUuWaBZHQKkDQ+Ofdyl1fZQoaAZoCWgPQwjFPZY+9J1vQJSGlFKUaBVL2WgWR0CpA0d/SYw7dX2UKGgGaAloD0MIbVZ9rrbGcUCUhpRSlGgVS95oFkdAqQNKHTI/7nV9lChoBmgJaA9DCJUsJ6F0gHNAlIaUUpRoFUvNaBZHQKkDgKG+K0l1fZQoaAZoCWgPQwiPVUrP9L1wQJSGlFKUaBVL2WgWR0CpA4PaL4vfdX2UKGgGaAloD0MItmXAWUoNcECUhpRSlGgVS9poFkdAqQPMT8HfM3V9lChoBmgJaA9DCMcvvJLkRUdAlIaUUpRoFUuKaBZHQKkD3/d69kB1fZQoaAZoCWgPQwjU8C2sGxVMQJSGlFKUaBVLnWgWR0CpBAhJZntfdX2UKGgGaAloD0MI5zdMNAjVc0CUhpRSlGgVS+NoFkdAqQQ9DjR2KXV9lChoBmgJaA9DCG/x8J6DOXNAlIaUUpRoFUv3aBZHQKkFHxaPjn51fZQoaAZoCWgPQwjkamRXmnNxQJSGlFKUaBVL9mgWR0CpBTJaiblSdX2UKGgGaAloD0MI9bpFYKw0cUCUhpRSlGgVS8RoFkdAqRaQ+4b0e3V9lChoBmgJaA9DCKRwPQoXu3NAlIaUUpRoFUvlaBZHQKkWkR/3Fkx1fZQoaAZoCWgPQwi8lpAPuopxQJSGlFKUaBVLxGgWR0CpFpiU5dWydX2UKGgGaAloD0MIdt1bkRitcECUhpRSlGgVS8poFkdAqRaqFCb+cnV9lChoBmgJaA9DCNR8lXwsynFAlIaUUpRoFUvgaBZHQKkWqk2xY7t1fZQoaAZoCWgPQwisjEY+L1RxQJSGlFKUaBVNBAFoFkdAqRa/uTibUnV9lChoBmgJaA9DCLr2BfSCo3FAlIaUUpRoFUvIaBZHQKkXNSUC7sh1fZQoaAZoCWgPQwj3yycrRslwQJSGlFKUaBVL5WgWR0CpF0AkcCHRdX2UKGgGaAloD0MIQIaOHZR8ckCUhpRSlGgVS+RoFkdAqRdAakyk9HV9lChoBmgJaA9DCMvZO6PtFHBAlIaUUpRoFUvLaBZHQKkXTjbSJCV1fZQoaAZoCWgPQwhFveDT3DtxQJSGlFKUaBVLu2gWR0CpF3KMefZmdX2UKGgGaAloD0MIVG8NbFWKcUCUhpRSlGgVS9toFkdAqRed+/gzg3V9lChoBmgJaA9DCIfD0sAP6nFAlIaUUpRoFUvSaBZHQKkYjlJYkmh1fZQoaAZoCWgPQwipa+196hlzQJSGlFKUaBVL7mgWR0CpGQJtzjm0dX2UKGgGaAloD0MIhzHp7+WRckCUhpRSlGgVS81oFkdAqRlhtzjm0XV9lChoBmgJaA9DCK9cb5spjnJAlIaUUpRoFUvcaBZHQKkZfssQNCt1fZQoaAZoCWgPQwi63GCowylvQJSGlFKUaBVL42gWR0CpGX8V58jSdX2UKGgGaAloD0MIRIfAkYATcECUhpRSlGgVS/toFkdAqRn1Y8uBc3V9lChoBmgJaA9DCH2SO2zirnFAlIaUUpRoFU0EAWgWR0CpGgRk3CKrdX2UKGgGaAloD0MISDMWTed+cUCUhpRSlGgVS9VoFkdAqRoTO1OTJXV9lChoBmgJaA9DCF+YTBUMiHBAlIaUUpRoFUvZaBZHQKkaMyquKXR1fZQoaAZoCWgPQwiA7suZ7cpxQJSGlFKUaBVL4WgWR0CpGj7LMcIadX2UKGgGaAloD0MIvDydKwpqcUCUhpRSlGgVS99oFkdAqRp6lLvkR3V9lChoBmgJaA9DCP2/6siRw3NAlIaUUpRoFU0nAWgWR0CpGn1Drqt6dX2UKGgGaAloD0MIr1sExnowcUCUhpRSlGgVTQQBaBZHQKkarKDkELZ1fZQoaAZoCWgPQwihvI+j+ahwQJSGlFKUaBVL52gWR0CpG9vsZ5zHdX2UKGgGaAloD0MIymq6nmg1ckCUhpRSlGgVTUUBaBZHQKkcJiT+vQp1fZQoaAZoCWgPQwjQXn08NCRwQJSGlFKUaBVLwWgWR0CpHEgJ1JUYdX2UKGgGaAloD0MImbhVEMP7cUCUhpRSlGgVS+JoFkdAqRxIegctG3V9lChoBmgJaA9DCFQ2rKks+nFAlIaUUpRoFUvTaBZHQKkcbNRFZxJ1fZQoaAZoCWgPQwgo84++SVdyQJSGlFKUaBVL0mgWR0CpHIWBreqJdX2UKGgGaAloD0MI51QyABSQcECUhpRSlGgVS9BoFkdAqRztX3g1nHV9lChoBmgJaA9DCOaxZmSQDFNAlIaUUpRoFUvJaBZHQKkdHnVXmvJ1fZQoaAZoCWgPQwj2XRH8r3pzQJSGlFKUaBVL4mgWR0CpHT9Sde6adX2UKGgGaAloD0MIG70aoPSXcECUhpRSlGgVS+FoFkdAqR1Kmbb1y3V9lChoBmgJaA9DCBjt8UK6IGdAlIaUUpRoFU3oA2gWR0CpHWnZ9NN8dX2UKGgGaAloD0MIDhMNUvBXcUCUhpRSlGgVS+ZoFkdAqR17bg0j1XV9lChoBmgJaA9DCLWLaaZ7X3FAlIaUUpRoFUvaaBZHQKkdkcZLqUx1fZQoaAZoCWgPQwgq499n3BJxQJSGlFKUaBVL5WgWR0CpHbSP+4smdX2UKGgGaAloD0MI9DehEMHVcUCUhpRSlGgVS+VoFkdAqR3ejM3ZPHV9lChoBmgJaA9DCFjFG5mHE3FAlIaUUpRoFUvbaBZHQKkezdcB2fV1fZQoaAZoCWgPQwjUKCSZ1ddvQJSGlFKUaBVLwGgWR0CpHwhzvJA/dX2UKGgGaAloD0MIi6VIvhIGZUCUhpRSlGgVTegDaBZHQKkfJmzSkTJ1fZQoaAZoCWgPQwiXcr7Ye1dxQJSGlFKUaBVL42gWR0CpHy2QOnVHdX2UKGgGaAloD0MIuMzpstg7cUCUhpRSlGgVS95oFkdAqR82QMhHLHV9lChoBmgJaA9DCMzwn27g1nJAlIaUUpRoFUvuaBZHQKkfZKf4AS51fZQoaAZoCWgPQwithy8TBedyQJSGlFKUaBVL5WgWR0CpH2mEGqxUdX2UKGgGaAloD0MISZ2AJsIcSUCUhpRSlGgVS5loFkdAqR98cuJ1q3V9lChoBmgJaA9DCMa+ZOMB/nNAlIaUUpRoFUvhaBZHQKkfzK3/gix1fZQoaAZoCWgPQwiV1t8SAHZxQJSGlFKUaBVL1mgWR0CpH9LYwqRVdX2UKGgGaAloD0MI1/uNdpzMcUCUhpRSlGgVS9ZoFkdAqSASN6w+uHV9lChoBmgJaA9DCAKfH0bISXBAlIaUUpRoFUvoaBZHQKkgMafBeol1fZQoaAZoCWgPQwgL7ZxmQaVwQJSGlFKUaBVL9mgWR0CpIIzAeq7zdX2UKGgGaAloD0MInzvB/qtpcUCUhpRSlGgVS/BoFkdAqSDia7VawHV9lChoBmgJaA9DCBLBOLg0qXBAlIaUUpRoFUv/aBZHQKkg5Ks+3Yt1fZQoaAZoCWgPQwggls0cErBwQJSGlFKUaBVLyWgWR0CpIbbcfvF4dX2UKGgGaAloD0MIc77Ye7E5ckCUhpRSlGgVS89oFkdAqSG71dxAB3V9lChoBmgJaA9DCJgZNsq6RHNAlIaUUpRoFUvraBZHQKkhyl+EytV1fZQoaAZoCWgPQwinrnyWp71xQJSGlFKUaBVL3WgWR0CpIdZE+gUUdX2UKGgGaAloD0MIeHsQAjI4cUCUhpRSlGgVS8doFkdAqSHv7gsK9nV9lChoBmgJaA9DCPcA3Zezb29AlIaUUpRoFUvKaBZHQKkh9bhWHUN1fZQoaAZoCWgPQwiYhXZOswFwQJSGlFKUaBVNeAFoFkdAqSIBDPWxyHV9lChoBmgJaA9DCMYzaOhfzXFAlIaUUpRoFUvqaBZHQKkiG4I8hcJ1fZQoaAZoCWgPQwi0dtuF5oNxQJSGlFKUaBVL22gWR0CpIjnnuAqedX2UKGgGaAloD0MI4UIewY3RcUCUhpRSlGgVS91oFkdAqSKNh1DBuXV9lChoBmgJaA9DCBkCgGOPhHFAlIaUUpRoFUvhaBZHQKkik4lQdjp1fZQoaAZoCWgPQwiQMuIC0HpvQJSGlFKUaBVL4GgWR0CpI1HZsbeedX2UKGgGaAloD0MIXyaKkDqncUCUhpRSlGgVTQMBaBZHQKkjaVxCIDZ1fZQoaAZoCWgPQwjK372jBk5xQJSGlFKUaBVNDAFoFkdAqSNpVlwtKHV9lChoBmgJaA9DCH3O3a7XTHBAlIaUUpRoFUvbaBZHQKkjmClrM1V1fZQoaAZoCWgPQwgBofXwJVRxQJSGlFKUaBVL5GgWR0CpI7ApazNVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 275.0808641, "std_reward": 16.587344036289252, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T16:17:59.979586"}
|