bartpotrykus commited on
Commit
4608856
1 Parent(s): b42992d

1m training steps

Browse files
1m-ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6e696a638772b482c7f322af343750f994f505e4831488ca08c960bdf40b10d
3
+ size 146266
1m-ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
1m-ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6df99c8f70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6df99cd040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6df99cd0d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6df99cd160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6df99cd1f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6df99cd280>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6df99cd310>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6df99cd3a0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6df99cd430>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6df99cd4c0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6df99cd550>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f6df99c1d80>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671541642684015405,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.015808000000000044,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjjo6rsYBZECUhpRSlIwBbJRN6AOMAXSUR0CRe/+ueSSvdX2UKGgGaAloD0MIQ1iNJazVYUCUhpRSlGgVTegDaBZHQJGBD/FR51N1fZQoaAZoCWgPQwgLRiV1AmhaQJSGlFKUaBVN6ANoFkdAkYHCM1jy4HV9lChoBmgJaA9DCPvL7snDIFlAlIaUUpRoFU3oA2gWR0CRgfaNdZ7pdX2UKGgGaAloD0MI/pyC/GyJXECUhpRSlGgVTegDaBZHQJGCfLyMDOl1fZQoaAZoCWgPQwj034PXLrFEQJSGlFKUaBVL2GgWR0CRg7chkiD/dX2UKGgGaAloD0MIeO49XPJ7YECUhpRSlGgVTegDaBZHQJGF8tcv/R51fZQoaAZoCWgPQwi9qrNa4EBkQJSGlFKUaBVN6ANoFkdAkYanivPkaXV9lChoBmgJaA9DCMU9lj704mNAlIaUUpRoFU3oA2gWR0CRjfXT3IuHdX2UKGgGaAloD0MIxeOiWkQ0YkCUhpRSlGgVTegDaBZHQJGQyYtxuKp1fZQoaAZoCWgPQwgL1c3FX0tjQJSGlFKUaBVN6ANoFkdAkZHSsKb8WXV9lChoBmgJaA9DCNrGn6hsvENAlIaUUpRoFU0sAWgWR0CRklnHNorXdX2UKGgGaAloD0MIUMWNW0zMZUCUhpRSlGgVTegDaBZHQJGT+grYoRZ1fZQoaAZoCWgPQwgUIXU7+0xlQJSGlFKUaBVN6ANoFkdAkZTBPCVKPHV9lChoBmgJaA9DCMCy0qQUalxAlIaUUpRoFU3oA2gWR0CRmwsZpBX0dX2UKGgGaAloD0MIUI2XbhIIYkCUhpRSlGgVTegDaBZHQJHIySV4X411fZQoaAZoCWgPQwgmrI2xEzVgQJSGlFKUaBVN6ANoFkdAkcx4MBp5/3V9lChoBmgJaA9DCHKndLD+22BAlIaUUpRoFU3oA2gWR0CR0krVvuPWdX2UKGgGaAloD0MIgzP4+0VyYUCUhpRSlGgVTegDaBZHQJHXW/336AR1fZQoaAZoCWgPQwjD0ytlmbVkQJSGlFKUaBVN6ANoFkdAkdgNedCmdnV9lChoBmgJaA9DCDPEsS5uemBAlIaUUpRoFU3oA2gWR0CR2EQEpy6udX2UKGgGaAloD0MIttjts0qIYECUhpRSlGgVTegDaBZHQJHYzDGcWj51fZQoaAZoCWgPQwjwT6kS5bdkQJSGlFKUaBVN6ANoFkdAkdyK7yxzJnV9lChoBmgJaA9DCPxwkBDlFmRAlIaUUpRoFU3oA2gWR0CR3T0Nz8xcdX2UKGgGaAloD0MItHOaBdpcXECUhpRSlGgVTegDaBZHQJHkSaUiY9h1fZQoaAZoCWgPQwiXrIpwkzdNQJSGlFKUaBVNAAFoFkdAkeTYn8baRXV9lChoBmgJaA9DCO2ZJQFqu2BAlIaUUpRoFU3oA2gWR0CR5vWJ79hrdX2UKGgGaAloD0MIXFmis8zQZUCUhpRSlGgVTegDaBZHQJHn7MNc4YJ1fZQoaAZoCWgPQwiERrBx/eVmQJSGlFKUaBVN6ANoFkdAkehiBXjlxXV9lChoBmgJaA9DCJiIt86/P2JAlIaUUpRoFU3oA2gWR0CR6brRjSXudX2UKGgGaAloD0MIx0yiXnBIZECUhpRSlGgVTegDaBZHQJHqX1ZkkKN1fZQoaAZoCWgPQwghj+BGyptlQJSGlFKUaBVN6ANoFkdAke+G/SH/LnV9lChoBmgJaA9DCI6VmGclvmRAlIaUUpRoFU3oA2gWR0CSHRkjX4CZdX2UKGgGaAloD0MIOKJ71rU/Y0CUhpRSlGgVTegDaBZHQJIgiERJ2+x1fZQoaAZoCWgPQwgS2QdZlu1gQJSGlFKUaBVN6ANoFkdAkiYBChN/OXV9lChoBmgJaA9DCKBwdmuZ4lpAlIaUUpRoFU3oA2gWR0CSKuOwxFiKdX2UKGgGaAloD0MImNwostayZUCUhpRSlGgVTegDaBZHQJIriGGmDUV1fZQoaAZoCWgPQwiLxtrf2UhhQJSGlFKUaBVN6ANoFkdAkiu8/t6X0HV9lChoBmgJaA9DCH5XBP/bmWNAlIaUUpRoFU3oA2gWR0CSL/hLoOhCdX2UKGgGaAloD0MIzy7f+rA+ZECUhpRSlGgVTegDaBZHQJIwwIzFdcB1fZQoaAZoCWgPQwiMaaZ7nfJeQJSGlFKUaBVN6ANoFkdAkjh6be/HpHV9lChoBmgJaA9DCE7udyiKuWVAlIaUUpRoFU3oA2gWR0CSOQkkKNQ1dX2UKGgGaAloD0MI4dOcvMj4bkCUhpRSlGgVTSMDaBZHQJI68vrWy1N1fZQoaAZoCWgPQwg6z9iXbKtaQJSGlFKUaBVN6ANoFkdAkjsWfkFOf3V9lChoBmgJaA9DCKNbr+nB7mFAlIaUUpRoFU3oA2gWR0CSO+hSLqD9dX2UKGgGaAloD0MIvK5fsBusQECUhpRSlGgVS/JoFkdAkjv+9OARTXV9lChoBmgJaA9DCGNhiJy+QGBAlIaUUpRoFU3oA2gWR0CSPFQNCqp+dX2UKGgGaAloD0MI5GVNLPCFGkCUhpRSlGgVS/VoFkdAkjzDOLR8dHV9lChoBmgJaA9DCMcOKnEdfGZAlIaUUpRoFU3oA2gWR0CSPYY5T6zmdX2UKGgGaAloD0MImWclrXhuYUCUhpRSlGgVTegDaBZHQJI+FH/cWTJ1fZQoaAZoCWgPQwjH9IQlHg5kQJSGlFKUaBVN6ANoFkdAkm9gQ+UyHnV9lChoBmgJaA9DCPqcu12vfWZAlIaUUpRoFU3oA2gWR0CScvA0sOG1dX2UKGgGaAloD0MIAWn/A6yyYkCUhpRSlGgVTegDaBZHQJJ4mlabF0h1fZQoaAZoCWgPQwgCEk2giERjQJSGlFKUaBVN6ANoFkdAkn3CkCV8kXV9lChoBmgJaA9DCEbRAx+DVWhAlIaUUpRoFU3oA2gWR0CSfnXhfjS5dX2UKGgGaAloD0MIqz5XWzGHZUCUhpRSlGgVTegDaBZHQJJ+rutwJgN1fZQoaAZoCWgPQwhTWn9LAMtQQJSGlFKUaBVL22gWR0CSiUb961LKdX2UKGgGaAloD0MIbvse9Vf+ZUCUhpRSlGgVTegDaBZHQJKMLpOerdZ1fZQoaAZoCWgPQwgfgxWnWthjQJSGlFKUaBVN6ANoFkdAkozNWU8mr3V9lChoBmgJaA9DCFOVtrjGBGNAlIaUUpRoFU3oA2gWR0CSjto/zJ6qdX2UKGgGaAloD0MIqcDJNvBJZUCUhpRSlGgVTegDaBZHQJKPAb70nPV1fZQoaAZoCWgPQwgmxjL9ErhYQJSGlFKUaBVN6ANoFkdAko/9y1eBx3V9lChoBmgJaA9DCA3BcRk3+lxAlIaUUpRoFU3oA2gWR0CSkBa+vhZRdX2UKGgGaAloD0MIOe0pOSe/X0CUhpRSlGgVTegDaBZHQJKQc9zOopB1fZQoaAZoCWgPQwg4LA38qDZeQJSGlFKUaBVN6ANoFkdAkpDx/iHZb3V9lChoBmgJaA9DCN0J9l/nWWRAlIaUUpRoFU3oA2gWR0CSkbnUlRgrdX2UKGgGaAloD0MI1owMcpdEYECUhpRSlGgVTegDaBZHQJKSSohpxm11fZQoaAZoCWgPQwgLtaZ5x8VdQJSGlFKUaBVN6ANoFkdAksRl18stkHV9lChoBmgJaA9DCG2NCMbBc2FAlIaUUpRoFU3oA2gWR0CSyDd/8VHndX2UKGgGaAloD0MIHlIMkOg6ZkCUhpRSlGgVTegDaBZHQJLOa9kBjnV1fZQoaAZoCWgPQwibVZ+rLcpjQJSGlFKUaBVN6ANoFkdAktS8ujASF3V9lChoBmgJaA9DCNfep6pQ3WRAlIaUUpRoFU3oA2gWR0CS1Pr0rbxmdX2UKGgGaAloD0MIEvjDz3+dYkCUhpRSlGgVTegDaBZHQJLgfEyckMV1fZQoaAZoCWgPQwiEZAETuEZjQJSGlFKUaBVN6ANoFkdAkuO04zabnXV9lChoBmgJaA9DCI6xE14CVmNAlIaUUpRoFU3oA2gWR0CS5FnjyWiUdX2UKGgGaAloD0MIl/260x1KYECUhpRSlGgVTegDaBZHQJLmdbMX7+F1fZQoaAZoCWgPQwg66ui4GiZiQJSGlFKUaBVN6ANoFkdAkuajR2KVIXV9lChoBmgJaA9DCClBf6FHYlxAlIaUUpRoFU3oA2gWR0CS55ikfs/qdX2UKGgGaAloD0MI/mDguXeAYUCUhpRSlGgVTegDaBZHQJLnstXgccV1fZQoaAZoCWgPQwgZO+ElOKNfQJSGlFKUaBVN6ANoFkdAkugPe+Eh7nV9lChoBmgJaA9DCDpdFhMbMWJAlIaUUpRoFU3oA2gWR0CS6IVT72tddX2UKGgGaAloD0MIZQETuHVTY0CUhpRSlGgVTegDaBZHQJLpW2qkuYh1fZQoaAZoCWgPQwglea7vwyphQJSGlFKUaBVN6ANoFkdAkunwAU+LWXV9lChoBmgJaA9DCF2pZ0Eoh05AlIaUUpRoFUvlaBZHQJLwI7fYSQJ1fZQoaAZoCWgPQwi1UZ0O5PthQJSGlFKUaBVN6ANoFkdAkxuN0eU6gnV9lChoBmgJaA9DCFggelImMmNAlIaUUpRoFU3oA2gWR0CTHtdGAkLQdX2UKGgGaAloD0MIbJbLRudHYUCUhpRSlGgVTegDaBZHQJMkXBzmwJR1fZQoaAZoCWgPQwgZOnZQCT1jQJSGlFKUaBVN6ANoFkdAkynyjcmBv3V9lChoBmgJaA9DCBy1wvQ97mFAlIaUUpRoFU3oA2gWR0CTKinJ1aGIdX2UKGgGaAloD0MI+3lTkYoUZ0CUhpRSlGgVTegDaBZHQJM0lYfW+XZ1fZQoaAZoCWgPQwj0wwjhUQhkQJSGlFKUaBVN6ANoFkdAkzeH58BuGnV9lChoBmgJaA9DCGmKAKf3t2ZAlIaUUpRoFU3oA2gWR0CTOCeU6gdwdX2UKGgGaAloD0MIWtk+5C3wVUCUhpRSlGgVTegDaBZHQJM6XlQuVX51fZQoaAZoCWgPQwiJfQIoRvxiQJSGlFKUaBVN6ANoFkdAkztZ2U0N0HV9lChoBmgJaA9DCJKtLqeEZmRAlIaUUpRoFU3oA2gWR0CTO3REnb7CdX2UKGgGaAloD0MIon+CixVkZUCUhpRSlGgVTegDaBZHQJM72DdxhlV1fZQoaAZoCWgPQwiH+IctPZZmQJSGlFKUaBVN6ANoFkdAkzxUGeMAFXV9lChoBmgJaA9DCBU5RNyczGFAlIaUUpRoFU3oA2gWR0CTPTQWvbGndX2UKGgGaAloD0MIoWgewKJuZ0CUhpRSlGgVTegDaBZHQJM90BGQSzx1fZQoaAZoCWgPQwj18dB3t5peQJSGlFKUaBVN6ANoFkdAk0RJlSS/03VlLg=="
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 248,
76
+ "n_steps": 1024,
77
+ "gamma": 0.999,
78
+ "gae_lambda": 0.98,
79
+ "ent_coef": 0.01,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 4,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
1m-ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:119f427dc468406ca0e6509f82962aece6bef278fcf086ec5a3e26b9c76707a8
3
+ size 88057
1m-ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43bac43e91350bb2f9ea5f13794f22580b06e4f0e9195ee1e56d8e5810fc4b88
3
+ size 43201
1m-ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
1m-ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Nov 23 01:01:46 UTC 2022
2
+ Python: 3.8.10
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.1+cu117
5
+ GPU Enabled: True
6
+ Numpy: 1.23.5
7
+ Gym: 0.21.0
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 212.01 +/- 56.32
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 234.33 +/- 16.69
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f21adea55e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21adea5670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f21adea5700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21adea5790>", "_build": "<function ActorCriticPolicy._build at 0x7f21adea5820>", "forward": "<function ActorCriticPolicy.forward at 0x7f21adea58b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21adea5940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f21adea59d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21adea5a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21adea5af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f21adea5b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f21ade9ede0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670593946512893452, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAb2D13UFE/aeGQPHeIN75Jv4M8/uBHvQAAAAAAAAAAGg9ovdeSf7tLbcS4oOPFPOwvzDx1Cae9AACAPwAAgD/NfGO9Bd2+P2npp76L2rw8Hw21PM53Yb0AAAAAAAAAAJqUJb3VmgI+Us1VPgsDZr5NpNw9j6g1vQAAAAAAAAAA5kFAPcPNB7pbKxi4EdCKsp9GoLuXlzE3AAAAAAAAgD8AKBS7UGdnPwaIqb0uqKy+qVlrvUCQ2b0AAAAAAAAAAJqZHbzYZ7o9PdJZPZsKZb7iKgI9Ja5hPAAAAAAAAAAAJoTLPWXTAD58YT2+jY9evlEY07wwKfE8AAAAAAAAAAAA4Y88XLdyuvX/kbg6J4yzyTkEO2XyqjcAAIA/AACAP03uEr0JuJQ/pcibvVk4jb6Lvjm8JahOvQAAAAAAAAAAQC0Hvty+CbytVBw85gaXPGUihD3QMnu9AACAPwAAgD+z+Yy9wy0OvDJqJz0iqBe9kjwdPerlDz4AAIA/AACAPzq9kL5dRjy9thIZOzIW8DmWp6E+TTVSugAAgD8AAIA/c6iRvR8Nvbl7G4k8oyUts4F9SLulFHGzAACAPwAAgD8AB5y9XeFvP5tHzb2saI2+syjLPA2etTsAAAAAAAAAAP0Cij4k22G9OuvYuZCPxzhoa8S+cfchOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhNkEGJYGcUCUhpRSlIwBbJRNeQGMAXSUR0CX6DHuZ1FIdX2UKGgGaAloD0MI4fCCiJRxcECUhpRSlGgVTUYBaBZHQJfqje1rqMZ1fZQoaAZoCWgPQwi6+NueoP9tQJSGlFKUaBVNfQFoFkdAl+tMDW9UTHV9lChoBmgJaA9DCCqRRC+jeW9AlIaUUpRoFU1zAWgWR0CX68yy2QXAdX2UKGgGaAloD0MIXaW762zucECUhpRSlGgVTX0BaBZHQJfs1qHoHLR1fZQoaAZoCWgPQwjpR8MpcxMNQJSGlFKUaBVNPAFoFkdAl+6NHMEA53V9lChoBmgJaA9DCPN1Gf7TlW5AlIaUUpRoFU1jAWgWR0CX72vllsgudX2UKGgGaAloD0MI5NcPsUGeb0CUhpRSlGgVTbABaBZHQJfwIXyiEg51fZQoaAZoCWgPQwhZNnNI6pZsQJSGlFKUaBVNWwFoFkdAl/EfwI+nqHV9lChoBmgJaA9DCMi3dw26QHBAlIaUUpRoFU2eAWgWR0CX8wnTy8SPdX2UKGgGaAloD0MIHlIMkOhabUCUhpRSlGgVTWwBaBZHQJfzCzv7WNF1fZQoaAZoCWgPQwgvMZbpl8RDQJSGlFKUaBVNOQFoFkdAl/O2gvlEJHV9lChoBmgJaA9DCGDmO/jJwnBAlIaUUpRoFU19AWgWR0CX9EUKRdQgdX2UKGgGaAloD0MIR8uBHurjb0CUhpRSlGgVTfkBaBZHQJf0uJ3xFy91fZQoaAZoCWgPQwiCOA8nMAFwQJSGlFKUaBVNogFoFkdAmAz7g4wRG3V9lChoBmgJaA9DCLrYtFIITDpAlIaUUpRoFU0hAWgWR0CYDcbs4T9LdX2UKGgGaAloD0MI/g3aq8/ocUCUhpRSlGgVTZYBaBZHQJgN8+Pikwh1fZQoaAZoCWgPQwiSXP5D+txsQJSGlFKUaBVNUAFoFkdAmA4VW0Z3tHV9lChoBmgJaA9DCGnk84onaGxAlIaUUpRoFU1NAmgWR0CYDtmA9V3mdX2UKGgGaAloD0MIAkcCDfb5cECUhpRSlGgVTVcBaBZHQJgPOHARChN1fZQoaAZoCWgPQwithsQ9FmJwQJSGlFKUaBVN4QFoFkdAmBIVcyFfzHV9lChoBmgJaA9DCH6qCg1E3GxAlIaUUpRoFU18AmgWR0CYEnjzZpSKdX2UKGgGaAloD0MIrp6T3jcNbkCUhpRSlGgVTYYBaBZHQJgSz2WY4Q11fZQoaAZoCWgPQwgvxOqPcAdwQJSGlFKUaBVNTQFoFkdAmBNN+G47R3V9lChoBmgJaA9DCCvCTUaVCURAlIaUUpRoFU0wAWgWR0CYE1enyd4FdX2UKGgGaAloD0MIo8haQ6l4b0CUhpRSlGgVTXcBaBZHQJgUB0V8CxN1fZQoaAZoCWgPQwjus8pM6ZlrQJSGlFKUaBVNYQFoFkdAmBR40VJti3V9lChoBmgJaA9DCFJkraFUI25AlIaUUpRoFU1fAmgWR0CYFOGjsUqQdX2UKGgGaAloD0MIDafMzfdbcECUhpRSlGgVTasBaBZHQJgVlhNM4951fZQoaAZoCWgPQwj5n/zdO2NaQJSGlFKUaBVN6ANoFkdAmBXagmJFb3V9lChoBmgJaA9DCOkmMQishkNAlIaUUpRoFU0SAWgWR0CYF4Fjd56ddX2UKGgGaAloD0MIdhn+042wcUCUhpRSlGgVTTIBaBZHQJgYcDbJwKl1fZQoaAZoCWgPQwhLk1LQbQRsQJSGlFKUaBVNWwFoFkdAmBnFWCEpRXV9lChoBmgJaA9DCHeC/de5yTZAlIaUUpRoFUv+aBZHQJgaUlt0mt11fZQoaAZoCWgPQwj9M4P4gOdwQJSGlFKUaBVNZAFoFkdAmBttznzQNXV9lChoBmgJaA9DCOyhfazgFG9AlIaUUpRoFU28AWgWR0CYHMrS3LFGdX2UKGgGaAloD0MI7/54r5oYcECUhpRSlGgVTVEBaBZHQJgd2w8nuzB1fZQoaAZoCWgPQwj/s+bH39hxQJSGlFKUaBVNNQFoFkdAmB+zjebd8HV9lChoBmgJaA9DCAXdXtKYsmtAlIaUUpRoFU17AWgWR0CYIJafzz3AdX2UKGgGaAloD0MI21Axzh/QcECUhpRSlGgVTWcBaBZHQJggopDu0C11fZQoaAZoCWgPQwindLD+D8JwQJSGlFKUaBVN9AFoFkdAmCDJftx+8XV9lChoBmgJaA9DCNZW7C+76m1AlIaUUpRoFU1pAWgWR0CYITcMEzO5dX2UKGgGaAloD0MIiIIZUzDQb0CUhpRSlGgVTWIBaBZHQJgiQDV6NVB1fZQoaAZoCWgPQwgyHTo9Ly1wQJSGlFKUaBVNgQFoFkdAmCPOAiFCcHV9lChoBmgJaA9DCN/A5EaRvXFAlIaUUpRoFU3rAWgWR0CYJKoNd7fIdX2UKGgGaAloD0MIwoh9Aqj4cECUhpRSlGgVTXYBaBZHQJglhP69CeF1fZQoaAZoCWgPQwj5SEp6mIttQJSGlFKUaBVNagFoFkdAmCYeUyHmBHV9lChoBmgJaA9DCJp5ck2Bx25AlIaUUpRoFU1PAWgWR0CYJm4dIXj3dX2UKGgGaAloD0MIEmkbf6IJbUCUhpRSlGgVTUkBaBZHQJgmtF4LThJ1fZQoaAZoCWgPQwj4b16c+II7QJSGlFKUaBVNTAFoFkdAmCe6w+t8u3V9lChoBmgJaA9DCJLmj2ltcmxAlIaUUpRoFU1+AmgWR0CYKQ6HTI/8dX2UKGgGaAloD0MI2uGvyVr7cECUhpRSlGgVTWwBaBZHQJgqHWkJrtV1fZQoaAZoCWgPQwgTLA5nfuUbQJSGlFKUaBVNFgFoFkdAmCpmQwK0D3V9lChoBmgJaA9DCGJJufucQGxAlIaUUpRoFU1QAWgWR0CYK9JE6T4ddX2UKGgGaAloD0MIqYWSySm7bUCUhpRSlGgVTVwBaBZHQJgtSSmqHXV1fZQoaAZoCWgPQwhivOZVnRtsQJSGlFKUaBVNsgFoFkdAmC3oWgvlEXV9lChoBmgJaA9DCNRjWwZcMHBAlIaUUpRoFU1ZAWgWR0CYLvWPLgXNdX2UKGgGaAloD0MIVKuvroosbECUhpRSlGgVTYIBaBZHQJgvbQ3PzFx1fZQoaAZoCWgPQwgIAfkSKmtuQJSGlFKUaBVNSAFoFkdAmC/wHeJpFnV9lChoBmgJaA9DCEsA/ilVnEhAlIaUUpRoFU0XAWgWR0CYMHAo5PuYdX2UKGgGaAloD0MIl+Kqsm8JbkCUhpRSlGgVTa4BaBZHQJgweraM72d1fZQoaAZoCWgPQwiaQBGLWExxQJSGlFKUaBVNeAFoFkdAmEUgz+FUQ3V9lChoBmgJaA9DCDliLT4FPWxAlIaUUpRoFU1kAWgWR0CYRT/Tb349dX2UKGgGaAloD0MIzZIANbUUJ8CUhpRSlGgVTQABaBZHQJhFlB1LamJ1fZQoaAZoCWgPQwipv15hwdNvQJSGlFKUaBVNTwFoFkdAmEW+fEn9enV9lChoBmgJaA9DCHAk0GBTJWtAlIaUUpRoFU16AWgWR0CYRsEPlMh6dX2UKGgGaAloD0MIqfV+o10jcUCUhpRSlGgVTVgBaBZHQJhG+2x6fJ51fZQoaAZoCWgPQwgDe0ykNM8wQJSGlFKUaBVNKgFoFkdAmEeUwnH/+HV9lChoBmgJaA9DCOpdvB83c3BAlIaUUpRoFU1xAWgWR0CYS6d7OVxCdX2UKGgGaAloD0MISQ7Y1eTaa0CUhpRSlGgVTUMBaBZHQJhL5kjHGS91fZQoaAZoCWgPQwh7vma57IVqQJSGlFKUaBVNvQFoFkdAmE09lZowmHV9lChoBmgJaA9DCDgSaLCpl29AlIaUUpRoFU1yAWgWR0CYTT7r9l3AdX2UKGgGaAloD0MIB0SIK+cqa0CUhpRSlGgVTU4BaBZHQJhNamIj4Yd1fZQoaAZoCWgPQwj/HydMWDRwQJSGlFKUaBVNOAFoFkdAmE4B/mT1TXV9lChoBmgJaA9DCBgkfVqFIHBAlIaUUpRoFU1WAWgWR0CYThxEORT1dX2UKGgGaAloD0MIJhk5C3uwakCUhpRSlGgVTUcBaBZHQJhOeMNtqHp1fZQoaAZoCWgPQwjCvp1EhJZtQJSGlFKUaBVNWQFoFkdAmE6j59E1EXV9lChoBmgJaA9DCEsGgCpu4G5AlIaUUpRoFU1AAWgWR0CYUHZgXuVpdX2UKGgGaAloD0MIARb59YNJcUCUhpRSlGgVTVMBaBZHQJhQyQ0XP7h1fZQoaAZoCWgPQwiiCKnb2fNxQJSGlFKUaBVNaQFoFkdAmFHogieNDXV9lChoBmgJaA9DCKirOxbbM3BAlIaUUpRoFU19AWgWR0CYUfoB7u2JdX2UKGgGaAloD0MI1y/YDduLcUCUhpRSlGgVTbIBaBZHQJhWgofCAMF1fZQoaAZoCWgPQwhPlIREWmxxQJSGlFKUaBVNQgFoFkdAmFbFRDTjN3V9lChoBmgJaA9DCM8sCVCTunBAlIaUUpRoFU3aAWgWR0CYVwE8JUo8dX2UKGgGaAloD0MIAruaPGUybkCUhpRSlGgVTVUBaBZHQJhXtUipvP11fZQoaAZoCWgPQwidg2dCE/BrQJSGlFKUaBVNVwFoFkdAmFkCCOFQEnV9lChoBmgJaA9DCLk4KjdRpGpAlIaUUpRoFU1nAWgWR0CYWZqzJIUbdX2UKGgGaAloD0MItAHYgIgbcUCUhpRSlGgVTWkBaBZHQJha95yEL6V1fZQoaAZoCWgPQwjp1QCloYRvQJSGlFKUaBVNhgFoFkdAmFxQGjbi63V9lChoBmgJaA9DCDHSi9o9v3FAlIaUUpRoFU2sAWgWR0CYXG75Ec81dX2UKGgGaAloD0MIzEHQ0SrcbUCUhpRSlGgVTWEBaBZHQJhdGZ8a4tp1fZQoaAZoCWgPQwjp76XwoFlwQJSGlFKUaBVNOQFoFkdAmF1PMW43FXV9lChoBmgJaA9DCBZQqKcPdXFAlIaUUpRoFU1xAWgWR0CYXerl/6O6dX2UKGgGaAloD0MIychZ2BMVcECUhpRSlGgVTdQBaBZHQJheTnLaEjB1fZQoaAZoCWgPQwifHXBdMdNxQJSGlFKUaBVNYwFoFkdAmF6oIrvsq3V9lChoBmgJaA9DCBwJNNhUGnFAlIaUUpRoFU02AWgWR0CYYtSE12q2dX2UKGgGaAloD0MIHCPZI9RHbkCUhpRSlGgVTVkBaBZHQJhjhRDTjNp1fZQoaAZoCWgPQwgQ6iKFMtZwQJSGlFKUaBVNZwFoFkdAmGOk12q1gHV9lChoBmgJaA9DCJ7OFaVELXBAlIaUUpRoFU2VAWgWR0CYZa93KSxJdX2UKGgGaAloD0MIP6iLFEqAbUCUhpRSlGgVTXkBaBZHQJhnCBZpztF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6df99c8f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6df99cd040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6df99cd0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6df99cd160>", "_build": "<function ActorCriticPolicy._build at 0x7f6df99cd1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6df99cd280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6df99cd310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6df99cd3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6df99cd430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6df99cd4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6df99cd550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6df99c1d80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671541642684015405, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjjo6rsYBZECUhpRSlIwBbJRN6AOMAXSUR0CRe/+ueSSvdX2UKGgGaAloD0MIQ1iNJazVYUCUhpRSlGgVTegDaBZHQJGBD/FR51N1fZQoaAZoCWgPQwgLRiV1AmhaQJSGlFKUaBVN6ANoFkdAkYHCM1jy4HV9lChoBmgJaA9DCPvL7snDIFlAlIaUUpRoFU3oA2gWR0CRgfaNdZ7pdX2UKGgGaAloD0MI/pyC/GyJXECUhpRSlGgVTegDaBZHQJGCfLyMDOl1fZQoaAZoCWgPQwj034PXLrFEQJSGlFKUaBVL2GgWR0CRg7chkiD/dX2UKGgGaAloD0MIeO49XPJ7YECUhpRSlGgVTegDaBZHQJGF8tcv/R51fZQoaAZoCWgPQwi9qrNa4EBkQJSGlFKUaBVN6ANoFkdAkYanivPkaXV9lChoBmgJaA9DCMU9lj704mNAlIaUUpRoFU3oA2gWR0CRjfXT3IuHdX2UKGgGaAloD0MIxeOiWkQ0YkCUhpRSlGgVTegDaBZHQJGQyYtxuKp1fZQoaAZoCWgPQwgL1c3FX0tjQJSGlFKUaBVN6ANoFkdAkZHSsKb8WXV9lChoBmgJaA9DCNrGn6hsvENAlIaUUpRoFU0sAWgWR0CRklnHNorXdX2UKGgGaAloD0MIUMWNW0zMZUCUhpRSlGgVTegDaBZHQJGT+grYoRZ1fZQoaAZoCWgPQwgUIXU7+0xlQJSGlFKUaBVN6ANoFkdAkZTBPCVKPHV9lChoBmgJaA9DCMCy0qQUalxAlIaUUpRoFU3oA2gWR0CRmwsZpBX0dX2UKGgGaAloD0MIUI2XbhIIYkCUhpRSlGgVTegDaBZHQJHIySV4X411fZQoaAZoCWgPQwgmrI2xEzVgQJSGlFKUaBVN6ANoFkdAkcx4MBp5/3V9lChoBmgJaA9DCHKndLD+22BAlIaUUpRoFU3oA2gWR0CR0krVvuPWdX2UKGgGaAloD0MIgzP4+0VyYUCUhpRSlGgVTegDaBZHQJHXW/336AR1fZQoaAZoCWgPQwjD0ytlmbVkQJSGlFKUaBVN6ANoFkdAkdgNedCmdnV9lChoBmgJaA9DCDPEsS5uemBAlIaUUpRoFU3oA2gWR0CR2EQEpy6udX2UKGgGaAloD0MIttjts0qIYECUhpRSlGgVTegDaBZHQJHYzDGcWj51fZQoaAZoCWgPQwjwT6kS5bdkQJSGlFKUaBVN6ANoFkdAkdyK7yxzJnV9lChoBmgJaA9DCPxwkBDlFmRAlIaUUpRoFU3oA2gWR0CR3T0Nz8xcdX2UKGgGaAloD0MItHOaBdpcXECUhpRSlGgVTegDaBZHQJHkSaUiY9h1fZQoaAZoCWgPQwiXrIpwkzdNQJSGlFKUaBVNAAFoFkdAkeTYn8baRXV9lChoBmgJaA9DCO2ZJQFqu2BAlIaUUpRoFU3oA2gWR0CR5vWJ79hrdX2UKGgGaAloD0MIXFmis8zQZUCUhpRSlGgVTegDaBZHQJHn7MNc4YJ1fZQoaAZoCWgPQwiERrBx/eVmQJSGlFKUaBVN6ANoFkdAkehiBXjlxXV9lChoBmgJaA9DCJiIt86/P2JAlIaUUpRoFU3oA2gWR0CR6brRjSXudX2UKGgGaAloD0MIx0yiXnBIZECUhpRSlGgVTegDaBZHQJHqX1ZkkKN1fZQoaAZoCWgPQwghj+BGyptlQJSGlFKUaBVN6ANoFkdAke+G/SH/LnV9lChoBmgJaA9DCI6VmGclvmRAlIaUUpRoFU3oA2gWR0CSHRkjX4CZdX2UKGgGaAloD0MIOKJ71rU/Y0CUhpRSlGgVTegDaBZHQJIgiERJ2+x1fZQoaAZoCWgPQwgS2QdZlu1gQJSGlFKUaBVN6ANoFkdAkiYBChN/OXV9lChoBmgJaA9DCKBwdmuZ4lpAlIaUUpRoFU3oA2gWR0CSKuOwxFiKdX2UKGgGaAloD0MImNwostayZUCUhpRSlGgVTegDaBZHQJIriGGmDUV1fZQoaAZoCWgPQwiLxtrf2UhhQJSGlFKUaBVN6ANoFkdAkiu8/t6X0HV9lChoBmgJaA9DCH5XBP/bmWNAlIaUUpRoFU3oA2gWR0CSL/hLoOhCdX2UKGgGaAloD0MIzy7f+rA+ZECUhpRSlGgVTegDaBZHQJIwwIzFdcB1fZQoaAZoCWgPQwiMaaZ7nfJeQJSGlFKUaBVN6ANoFkdAkjh6be/HpHV9lChoBmgJaA9DCE7udyiKuWVAlIaUUpRoFU3oA2gWR0CSOQkkKNQ1dX2UKGgGaAloD0MI4dOcvMj4bkCUhpRSlGgVTSMDaBZHQJI68vrWy1N1fZQoaAZoCWgPQwg6z9iXbKtaQJSGlFKUaBVN6ANoFkdAkjsWfkFOf3V9lChoBmgJaA9DCKNbr+nB7mFAlIaUUpRoFU3oA2gWR0CSO+hSLqD9dX2UKGgGaAloD0MIvK5fsBusQECUhpRSlGgVS/JoFkdAkjv+9OARTXV9lChoBmgJaA9DCGNhiJy+QGBAlIaUUpRoFU3oA2gWR0CSPFQNCqp+dX2UKGgGaAloD0MI5GVNLPCFGkCUhpRSlGgVS/VoFkdAkjzDOLR8dHV9lChoBmgJaA9DCMcOKnEdfGZAlIaUUpRoFU3oA2gWR0CSPYY5T6zmdX2UKGgGaAloD0MImWclrXhuYUCUhpRSlGgVTegDaBZHQJI+FH/cWTJ1fZQoaAZoCWgPQwjH9IQlHg5kQJSGlFKUaBVN6ANoFkdAkm9gQ+UyHnV9lChoBmgJaA9DCPqcu12vfWZAlIaUUpRoFU3oA2gWR0CScvA0sOG1dX2UKGgGaAloD0MIAWn/A6yyYkCUhpRSlGgVTegDaBZHQJJ4mlabF0h1fZQoaAZoCWgPQwgCEk2giERjQJSGlFKUaBVN6ANoFkdAkn3CkCV8kXV9lChoBmgJaA9DCEbRAx+DVWhAlIaUUpRoFU3oA2gWR0CSfnXhfjS5dX2UKGgGaAloD0MIqz5XWzGHZUCUhpRSlGgVTegDaBZHQJJ+rutwJgN1fZQoaAZoCWgPQwhTWn9LAMtQQJSGlFKUaBVL22gWR0CSiUb961LKdX2UKGgGaAloD0MIbvse9Vf+ZUCUhpRSlGgVTegDaBZHQJKMLpOerdZ1fZQoaAZoCWgPQwgfgxWnWthjQJSGlFKUaBVN6ANoFkdAkozNWU8mr3V9lChoBmgJaA9DCFOVtrjGBGNAlIaUUpRoFU3oA2gWR0CSjto/zJ6qdX2UKGgGaAloD0MIqcDJNvBJZUCUhpRSlGgVTegDaBZHQJKPAb70nPV1fZQoaAZoCWgPQwgmxjL9ErhYQJSGlFKUaBVN6ANoFkdAko/9y1eBx3V9lChoBmgJaA9DCA3BcRk3+lxAlIaUUpRoFU3oA2gWR0CSkBa+vhZRdX2UKGgGaAloD0MIOe0pOSe/X0CUhpRSlGgVTegDaBZHQJKQc9zOopB1fZQoaAZoCWgPQwg4LA38qDZeQJSGlFKUaBVN6ANoFkdAkpDx/iHZb3V9lChoBmgJaA9DCN0J9l/nWWRAlIaUUpRoFU3oA2gWR0CSkbnUlRgrdX2UKGgGaAloD0MI1owMcpdEYECUhpRSlGgVTegDaBZHQJKSSohpxm11fZQoaAZoCWgPQwgLtaZ5x8VdQJSGlFKUaBVN6ANoFkdAksRl18stkHV9lChoBmgJaA9DCG2NCMbBc2FAlIaUUpRoFU3oA2gWR0CSyDd/8VHndX2UKGgGaAloD0MIHlIMkOg6ZkCUhpRSlGgVTegDaBZHQJLOa9kBjnV1fZQoaAZoCWgPQwibVZ+rLcpjQJSGlFKUaBVN6ANoFkdAktS8ujASF3V9lChoBmgJaA9DCNfep6pQ3WRAlIaUUpRoFU3oA2gWR0CS1Pr0rbxmdX2UKGgGaAloD0MIEvjDz3+dYkCUhpRSlGgVTegDaBZHQJLgfEyckMV1fZQoaAZoCWgPQwiEZAETuEZjQJSGlFKUaBVN6ANoFkdAkuO04zabnXV9lChoBmgJaA9DCI6xE14CVmNAlIaUUpRoFU3oA2gWR0CS5FnjyWiUdX2UKGgGaAloD0MIl/260x1KYECUhpRSlGgVTegDaBZHQJLmdbMX7+F1fZQoaAZoCWgPQwg66ui4GiZiQJSGlFKUaBVN6ANoFkdAkuajR2KVIXV9lChoBmgJaA9DCClBf6FHYlxAlIaUUpRoFU3oA2gWR0CS55ikfs/qdX2UKGgGaAloD0MI/mDguXeAYUCUhpRSlGgVTegDaBZHQJLnstXgccV1fZQoaAZoCWgPQwgZO+ElOKNfQJSGlFKUaBVN6ANoFkdAkugPe+Eh7nV9lChoBmgJaA9DCDpdFhMbMWJAlIaUUpRoFU3oA2gWR0CS6IVT72tddX2UKGgGaAloD0MIZQETuHVTY0CUhpRSlGgVTegDaBZHQJLpW2qkuYh1fZQoaAZoCWgPQwglea7vwyphQJSGlFKUaBVN6ANoFkdAkunwAU+LWXV9lChoBmgJaA9DCF2pZ0Eoh05AlIaUUpRoFUvlaBZHQJLwI7fYSQJ1fZQoaAZoCWgPQwi1UZ0O5PthQJSGlFKUaBVN6ANoFkdAkxuN0eU6gnV9lChoBmgJaA9DCFggelImMmNAlIaUUpRoFU3oA2gWR0CTHtdGAkLQdX2UKGgGaAloD0MIbJbLRudHYUCUhpRSlGgVTegDaBZHQJMkXBzmwJR1fZQoaAZoCWgPQwgZOnZQCT1jQJSGlFKUaBVN6ANoFkdAkynyjcmBv3V9lChoBmgJaA9DCBy1wvQ97mFAlIaUUpRoFU3oA2gWR0CTKinJ1aGIdX2UKGgGaAloD0MI+3lTkYoUZ0CUhpRSlGgVTegDaBZHQJM0lYfW+XZ1fZQoaAZoCWgPQwj0wwjhUQhkQJSGlFKUaBVN6ANoFkdAkzeH58BuGnV9lChoBmgJaA9DCGmKAKf3t2ZAlIaUUpRoFU3oA2gWR0CTOCeU6gdwdX2UKGgGaAloD0MIWtk+5C3wVUCUhpRSlGgVTegDaBZHQJM6XlQuVX51fZQoaAZoCWgPQwiJfQIoRvxiQJSGlFKUaBVN6ANoFkdAkztZ2U0N0HV9lChoBmgJaA9DCJKtLqeEZmRAlIaUUpRoFU3oA2gWR0CTO3REnb7CdX2UKGgGaAloD0MIon+CixVkZUCUhpRSlGgVTegDaBZHQJM72DdxhlV1fZQoaAZoCWgPQwiH+IctPZZmQJSGlFKUaBVN6ANoFkdAkzxUGeMAFXV9lChoBmgJaA9DCBU5RNyczGFAlIaUUpRoFU3oA2gWR0CTPTQWvbGndX2UKGgGaAloD0MIoWgewKJuZ0CUhpRSlGgVTegDaBZHQJM90BGQSzx1fZQoaAZoCWgPQwj18dB3t5peQJSGlFKUaBVN6ANoFkdAk0RJlSS/03VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 212.00589464062455, "std_reward": 56.324861103956465, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-09T14:41:41.394447"}
 
1
+ {"mean_reward": 234.33338080000004, "std_reward": 16.69454333831236, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T15:18:11.216293"}