bartpotrykus commited on
Commit
0dba220
1 Parent(s): cc480d3

15m training steps

Browse files
15m-ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:596a25b3abba3c268241054295c93d0b3182cac27317499f367933ce9591c720
3
+ size 146146
15m-ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
15m-ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9762304f70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9762309040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f97623090d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9762309160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f97623091f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9762309280>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9762309310>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f97623093a0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9762309430>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f97623094c0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9762309550>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f97622fed80>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 15007744,
46
+ "_total_timesteps": 15000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671557815362637149,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.0005162666666667093,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsaIG07ANdECUhpRSlIwBbJRNDwGMAXSUR0DJ+1titq59dX2UKGgGaAloD0MIG0zD8FF+c0CUhpRSlGgVS65oFkdAyftea0hNd3V9lChoBmgJaA9DCIANiBAX73FAlIaUUpRoFUumaBZHQMn7ZgzpHI91fZQoaAZoCWgPQwjryJHOwEJxQJSGlFKUaBVLq2gWR0DJ/ud3OfNBdX2UKGgGaAloD0MIoDNpUzVLckCUhpRSlGgVS7JoFkdAyf7rkTYdyXV9lChoBmgJaA9DCH79EBts73NAlIaUUpRoFUu9aBZHQMn+8SQPqcF1fZQoaAZoCWgPQwj+1k6UxJBxQJSGlFKUaBVLnmgWR0DJ/vdqQA+7dX2UKGgGaAloD0MIwLM9ekN7c0CUhpRSlGgVS79oFkdAyf79nHNorXV9lChoBmgJaA9DCMrhk04kMHNAlIaUUpRoFUunaBZHQMn/B6jvd/J1fZQoaAZoCWgPQwiTxJJy93hzQJSGlFKUaBVLq2gWR0DJ/w3TTfBOdX2UKGgGaAloD0MIdH6K4wCmckCUhpRSlGgVS7xoFkdAyf8ggMc6vXV9lChoBmgJaA9DCNC0xMqo83JAlIaUUpRoFUu4aBZHQMn/ITwDvE11fZQoaAZoCWgPQwh56SYxyPhzQJSGlFKUaBVLtGgWR0DJ/yKlk6LgdX2UKGgGaAloD0MII7w9CIHfckCUhpRSlGgVTSkBaBZHQMn/J1ivxH51fZQoaAZoCWgPQwhN9zqp70ZyQJSGlFKUaBVLu2gWR0DJ/zQ1NxlydX2UKGgGaAloD0MIdbFppRDKcECUhpRSlGgVS4RoFkdAyf87CGetjnV9lChoBmgJaA9DCM8wtaWOzm9AlIaUUpRoFUvGaBZHQMn/QIKMNtt1fZQoaAZoCWgPQwheoKTAAihzQJSGlFKUaBVLr2gWR0DJ/0GRV6u5dX2UKGgGaAloD0MIcobijrdPckCUhpRSlGgVS7hoFkdAyf9EZUkv9XV9lChoBmgJaA9DCO317o/3NnNAlIaUUpRoFUuSaBZHQMn/R2saKk51fZQoaAZoCWgPQwjtSstI/ehxQJSGlFKUaBVLtmgWR0DJ/0vAEdNndX2UKGgGaAloD0MIDMo0mpx9c0CUhpRSlGgVS6RoFkdAyf9mGpuMuXV9lChoBmgJaA9DCDGx+bh2k3JAlIaUUpRoFUuQaBZHQMn/acSXdCV1fZQoaAZoCWgPQwiV1AloYh1yQJSGlFKUaBVLuGgWR0DJ/21DYywfdX2UKGgGaAloD0MIkncOZagsdECUhpRSlGgVS8doFkdAyf9wby6MBXV9lChoBmgJaA9DCLcqiezDPnJAlIaUUpRoFUvDaBZHQMn/hyncclx1fZQoaAZoCWgPQwh0XmOX6ChzQJSGlFKUaBVLpGgWR0DJ/41v/BFedX2UKGgGaAloD0MIXfsCeuFhckCUhpRSlGgVS69oFkdAyf+TsoDxLHV9lChoBmgJaA9DCLq6Y7FNXXJAlIaUUpRoFUu5aBZHQMn/mc1wYLt1fZQoaAZoCWgPQwix+E1h5RFxQJSGlFKUaBVLo2gWR0DJ/6AUnG83dX2UKGgGaAloD0MIq8/VVuz9c0CUhpRSlGgVS89oFkdAyf+vo6CDmXV9lChoBmgJaA9DCNKpK5+lVHFAlIaUUpRoFUu0aBZHQMn/s16u4gB1fZQoaAZoCWgPQwgnpaDby+hxQJSGlFKUaBVLr2gWR0DJ/7YWpIczdX2UKGgGaAloD0MIog3ABkQ4ckCUhpRSlGgVS6RoFkdAyf+2oddVvXV9lChoBmgJaA9DCKwfm+RHvnJAlIaUUpRoFUugaBZHQMn/uTGPxQV1fZQoaAZoCWgPQwiKAKd3cRJyQJSGlFKUaBVLtmgWR0DJ/78W9DhMdX2UKGgGaAloD0MIi4wOSIITdECUhpRSlGgVS8xoFkdAyf/KPXkHU3V9lChoBmgJaA9DCE1J1uFopXJAlIaUUpRoFUuTaBZHQMn/1HlOoHd1fZQoaAZoCWgPQwiLUGwFTWBzQJSGlFKUaBVLs2gWR0DJ/+CT8pCsdX2UKGgGaAloD0MIm1jgK7oVckCUhpRSlGgVS7BoFkdAyf/iDWbw0HV9lChoBmgJaA9DCGkbf6Iy23NAlIaUUpRoFUvDaBZHQMn/8kgW8Ad1fZQoaAZoCWgPQwihR4ye2zpvQJSGlFKUaBVLo2gWR0DJ//vcDbJwdX2UKGgGaAloD0MIWycux6uGc0CUhpRSlGgVS6NoFkdAygACJWNm2HV9lChoBmgJaA9DCO6Yuit7jXJAlIaUUpRoFUu4aBZHQMoABCN83Mp1fZQoaAZoCWgPQwiCGylbJLpwQJSGlFKUaBVLnmgWR0DKAATr3TNMdX2UKGgGaAloD0MIJQNAFbcjcUCUhpRSlGgVS6RoFkdAygAO0dilSHV9lChoBmgJaA9DCA/Tvrk/JHJAlIaUUpRoFUuPaBZHQMoAEA93bEh1fZQoaAZoCWgPQwhM4UGz61ZxQJSGlFKUaBVLm2gWR0DKAB5tSAH3dX2UKGgGaAloD0MIHw4Sovxhc0CUhpRSlGgVS6VoFkdAygAiF0PpZHV9lChoBmgJaA9DCB/ZXDWPtXNAlIaUUpRoFUuoaBZHQMoAJsotthx1fZQoaAZoCWgPQwjyQ6URM7ZxQJSGlFKUaBVLrmgWR0DKAC3GS6lMdX2UKGgGaAloD0MI3JxKBgA4c0CUhpRSlGgVS5toFkdAygAyqEvkBHV9lChoBmgJaA9DCDdxcr+DFXJAlIaUUpRoFUu0aBZHQMoAN8tXgcd1fZQoaAZoCWgPQwhwsDcxJFdwQJSGlFKUaBVLmGgWR0DKADq42CNCdX2UKGgGaAloD0MI1edqK/bnQUCUhpRSlGgVS2hoFkdAygBU/cFhX3V9lChoBmgJaA9DCC6M9KK2BHFAlIaUUpRoFUuVaBZHQMoAVYlQdjp1fZQoaAZoCWgPQwhznNuEe3RyQJSGlFKUaBVLs2gWR0DKAFnbZezEdX2UKGgGaAloD0MIeT2YFN/FcECUhpRSlGgVS45oFkdAygBgpazNU3V9lChoBmgJaA9DCNdrelAQkHBAlIaUUpRoFUuXaBZHQMoAYLBTGYN1fZQoaAZoCWgPQwjSGK2jKn1zQJSGlFKUaBVLw2gWR0DKAGM/MW43dX2UKGgGaAloD0MIvwrw3Wb5cUCUhpRSlGgVS5FoFkdAygBlbB42THV9lChoBmgJaA9DCDj27LlMVnNAlIaUUpRoFUuoaBZHQMoAc/8EV351fZQoaAZoCWgPQwgcYVERJ1dyQJSGlFKUaBVLwGgWR0DKAJBdSl3ydX2UKGgGaAloD0MItafknFizckCUhpRSlGgVS6toFkdAygCSVGCqZXV9lChoBmgJaA9DCIcW2c53/XJAlIaUUpRoFUutaBZHQMoAnIoNNJx1fZQoaAZoCWgPQwgEqRQ7mvJxQJSGlFKUaBVLmWgWR0DKAKOnQ6ZIdX2UKGgGaAloD0MIPfIHA89HT0CUhpRSlGgVS3FoFkdAygCkMH8jzXV9lChoBmgJaA9DCFnbFI+Lc3FAlIaUUpRoFUuuaBZHQMoApPKMefZ1fZQoaAZoCWgPQwhAo3TpX9VyQJSGlFKUaBVLxGgWR0DKAKgZEUj+dX2UKGgGaAloD0MIl1ZD4t5WcECUhpRSlGgVS6VoFkdAygCpLqUu+XV9lChoBmgJaA9DCAJLrmJxQHRAlIaUUpRoFUvBaBZHQMoAtqrq+rV1fZQoaAZoCWgPQwgR/dr6qbdzQJSGlFKUaBVLpmgWR0DKAMfsVtXQdX2UKGgGaAloD0MIzGPNyOA3ckCUhpRSlGgVS5toFkdAygDMJyhi9nV9lChoBmgJaA9DCEnXTL4Z8nNAlIaUUpRoFUu8aBZHQMoA3PCMxXZ1fZQoaAZoCWgPQwg0ZacfFMNxQJSGlFKUaBVLt2gWR0DKAOPEVFhHdX2UKGgGaAloD0MIKeeLvVcNdECUhpRSlGgVS7xoFkdAygDkmzByj3V9lChoBmgJaA9DCF9DcFzG60RAlIaUUpRoFUthaBZHQMoA6IAn2Ix1fZQoaAZoCWgPQwi6oSk7vUpzQJSGlFKUaBVLvmgWR0DKAOsqtozvdX2UKGgGaAloD0MIbToCuBkhcUCUhpRSlGgVS6JoFkdAygEEvNeMQ3V9lChoBmgJaA9DCDScMjff2XJAlIaUUpRoFUuHaBZHQMoBBgyM1j11fZQoaAZoCWgPQwhGX0GaMWtxQJSGlFKUaBVLnWgWR0DKAQ5jJ+2FdX2UKGgGaAloD0MIc0f/yzUjckCUhpRSlGgVS5doFkdAygER00WM0nV9lChoBmgJaA9DCJZbWg0JknJAlIaUUpRoFUu7aBZHQMoBGfc32mJ1fZQoaAZoCWgPQwh/ox03vHx0QJSGlFKUaBVL/GgWR0DKASrByjpLdX2UKGgGaAloD0MIdoh/2NLWc0CUhpRSlGgVS7toFkdAygExAM2FWXV9lChoBmgJaA9DCE/OUNyxU3FAlIaUUpRoFUuqaBZHQMoBNH003wV1fZQoaAZoCWgPQwgg8MAAwjF0QJSGlFKUaBVLyGgWR0DKATuiQDFIdX2UKGgGaAloD0MIYCFzZRAxckCUhpRSlGgVS6ZoFkdAygFDXAdn03V9lChoBmgJaA9DCANgPIMG9HFAlIaUUpRoFUu3aBZHQMoBUxiw0O51fZQoaAZoCWgPQwiP/pdrEWVyQJSGlFKUaBVLnWgWR0DKAVdy1eBydX2UKGgGaAloD0MI+l5DcNx3c0CUhpRSlGgVS51oFkdAygFcEnssx3V9lChoBmgJaA9DCDCBW3fzVnNAlIaUUpRoFUu2aBZHQMoBacslLOB1fZQoaAZoCWgPQwiE1O3s6xhzQJSGlFKUaBVLwWgWR0DKAWqVpsXSdX2UKGgGaAloD0MIMgG/RtKTcECUhpRSlGgVS7JoFkdAygFtWLgn+nV9lChoBmgJaA9DCKTGhJjL3HBAlIaUUpRoFUueaBZHQMoBdxT0g8t1fZQoaAZoCWgPQwhm3NRA849zQJSGlFKUaBVLpGgWR0DKAXwmb9ZSdX2UKGgGaAloD0MIlIRE2ka8cUCUhpRSlGgVS6FoFkdAygGEONHYpXV9lChoBmgJaA9DCPCFyVSBenJAlIaUUpRoFUu3aBZHQMoBkFEy+Ht1fZQoaAZoCWgPQwj7QPLOoR50QJSGlFKUaBVLq2gWR0DKAZL4UN8WdX2UKGgGaAloD0MIYJM16iEjcUCUhpRSlGgVS4NoFkdAygGWUwi7kHVlLg=="
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 3664,
76
+ "n_steps": 1024,
77
+ "gamma": 0.999,
78
+ "gae_lambda": 0.98,
79
+ "ent_coef": 0.01,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 4,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
15m-ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2090441738b66c3eb4aad2bee9c4876ebc29a628fe840a236cae418d76d01630
3
+ size 88057
15m-ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec7da89431b8f7eec1eab6b28ef46c32d84a204382a762fb6aa584b97d13e3d2
3
+ size 43201
15m-ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
15m-ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Nov 23 01:01:46 UTC 2022
2
+ Python: 3.8.10
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.1+cu117
5
+ GPU Enabled: True
6
+ Numpy: 1.23.5
7
+ Gym: 0.21.0
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 275.08 +/- 16.59
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 289.11 +/- 20.47
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4f1d6cf70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4f1d71040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4f1d710d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4f1d71160>", "_build": "<function ActorCriticPolicy._build at 0x7fd4f1d711f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd4f1d71280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4f1d71310>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd4f1d713a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4f1d71430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4f1d714c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4f1d71550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd4f1d66d80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671546026588620455, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5NcPsUGKcUCUhpRSlIwBbJRL3IwBdJRHQKj/9974SHx1fZQoaAZoCWgPQwhTW+og70hxQJSGlFKUaBVL32gWR0CpABC1AqusdX2UKGgGaAloD0MI93e2R6+WckCUhpRSlGgVS/FoFkdAqQBSXrt3OnV9lChoBmgJaA9DCCYYzjUM+nJAlIaUUpRoFUvwaBZHQKkAkQYk3S91fZQoaAZoCWgPQwii8UQQ50tSQJSGlFKUaBVLoGgWR0CpAJ5PuXu3dX2UKGgGaAloD0MIqI/AH34ockCUhpRSlGgVS/VoFkdAqQDaiCaqj3V9lChoBmgJaA9DCHQK8rPRG3NAlIaUUpRoFUvhaBZHQKkA+rSVnmJ1fZQoaAZoCWgPQwijBtMwvJdyQJSGlFKUaBVLx2gWR0CpAR9PDYRNdX2UKGgGaAloD0MIP8dHizOWcUCUhpRSlGgVS/toFkdAqQEw0Mw1znV9lChoBmgJaA9DCFFNSdbhVnJAlIaUUpRoFUv6aBZHQKkBYgL7XQN1fZQoaAZoCWgPQwiRgNHlzZVUQJSGlFKUaBVLzmgWR0CpAWuCwr1/dX2UKGgGaAloD0MIgCiYMQWPb0CUhpRSlGgVS9NoFkdAqQIEgr6LwXV9lChoBmgJaA9DCMoXtJCAD3NAlIaUUpRoFUvtaBZHQKkCFYLb5/N1fZQoaAZoCWgPQwjqlh3i33ZxQJSGlFKUaBVL4GgWR0CpAhmb1AZ9dX2UKGgGaAloD0MI9Kj4v2PgcUCUhpRSlGgVS8NoFkdAqQIrJSzgM3V9lChoBmgJaA9DCJ7RViVRbXFAlIaUUpRoFUvWaBZHQKkCmhIOH311fZQoaAZoCWgPQwh7Z7RViWlyQJSGlFKUaBVLzWgWR0CpAtUTtb9qdX2UKGgGaAloD0MIumddo2XccUCUhpRSlGgVS+toFkdAqQL8eGO+7HV9lChoBmgJaA9DCEW4yagy0lNAlIaUUpRoFUuWaBZHQKkDQ+Ofdyl1fZQoaAZoCWgPQwjFPZY+9J1vQJSGlFKUaBVL2WgWR0CpA0d/SYw7dX2UKGgGaAloD0MIbVZ9rrbGcUCUhpRSlGgVS95oFkdAqQNKHTI/7nV9lChoBmgJaA9DCJUsJ6F0gHNAlIaUUpRoFUvNaBZHQKkDgKG+K0l1fZQoaAZoCWgPQwiPVUrP9L1wQJSGlFKUaBVL2WgWR0CpA4PaL4vfdX2UKGgGaAloD0MItmXAWUoNcECUhpRSlGgVS9poFkdAqQPMT8HfM3V9lChoBmgJaA9DCMcvvJLkRUdAlIaUUpRoFUuKaBZHQKkD3/d69kB1fZQoaAZoCWgPQwjU8C2sGxVMQJSGlFKUaBVLnWgWR0CpBAhJZntfdX2UKGgGaAloD0MI5zdMNAjVc0CUhpRSlGgVS+NoFkdAqQQ9DjR2KXV9lChoBmgJaA9DCG/x8J6DOXNAlIaUUpRoFUv3aBZHQKkFHxaPjn51fZQoaAZoCWgPQwjkamRXmnNxQJSGlFKUaBVL9mgWR0CpBTJaiblSdX2UKGgGaAloD0MI9bpFYKw0cUCUhpRSlGgVS8RoFkdAqRaQ+4b0e3V9lChoBmgJaA9DCKRwPQoXu3NAlIaUUpRoFUvlaBZHQKkWkR/3Fkx1fZQoaAZoCWgPQwi8lpAPuopxQJSGlFKUaBVLxGgWR0CpFpiU5dWydX2UKGgGaAloD0MIdt1bkRitcECUhpRSlGgVS8poFkdAqRaqFCb+cnV9lChoBmgJaA9DCNR8lXwsynFAlIaUUpRoFUvgaBZHQKkWqk2xY7t1fZQoaAZoCWgPQwisjEY+L1RxQJSGlFKUaBVNBAFoFkdAqRa/uTibUnV9lChoBmgJaA9DCLr2BfSCo3FAlIaUUpRoFUvIaBZHQKkXNSUC7sh1fZQoaAZoCWgPQwj3yycrRslwQJSGlFKUaBVL5WgWR0CpF0AkcCHRdX2UKGgGaAloD0MIQIaOHZR8ckCUhpRSlGgVS+RoFkdAqRdAakyk9HV9lChoBmgJaA9DCMvZO6PtFHBAlIaUUpRoFUvLaBZHQKkXTjbSJCV1fZQoaAZoCWgPQwhFveDT3DtxQJSGlFKUaBVLu2gWR0CpF3KMefZmdX2UKGgGaAloD0MIVG8NbFWKcUCUhpRSlGgVS9toFkdAqRed+/gzg3V9lChoBmgJaA9DCIfD0sAP6nFAlIaUUpRoFUvSaBZHQKkYjlJYkmh1fZQoaAZoCWgPQwipa+196hlzQJSGlFKUaBVL7mgWR0CpGQJtzjm0dX2UKGgGaAloD0MIhzHp7+WRckCUhpRSlGgVS81oFkdAqRlhtzjm0XV9lChoBmgJaA9DCK9cb5spjnJAlIaUUpRoFUvcaBZHQKkZfssQNCt1fZQoaAZoCWgPQwi63GCowylvQJSGlFKUaBVL42gWR0CpGX8V58jSdX2UKGgGaAloD0MIRIfAkYATcECUhpRSlGgVS/toFkdAqRn1Y8uBc3V9lChoBmgJaA9DCH2SO2zirnFAlIaUUpRoFU0EAWgWR0CpGgRk3CKrdX2UKGgGaAloD0MISDMWTed+cUCUhpRSlGgVS9VoFkdAqRoTO1OTJXV9lChoBmgJaA9DCF+YTBUMiHBAlIaUUpRoFUvZaBZHQKkaMyquKXR1fZQoaAZoCWgPQwiA7suZ7cpxQJSGlFKUaBVL4WgWR0CpGj7LMcIadX2UKGgGaAloD0MIvDydKwpqcUCUhpRSlGgVS99oFkdAqRp6lLvkR3V9lChoBmgJaA9DCP2/6siRw3NAlIaUUpRoFU0nAWgWR0CpGn1Drqt6dX2UKGgGaAloD0MIr1sExnowcUCUhpRSlGgVTQQBaBZHQKkarKDkELZ1fZQoaAZoCWgPQwihvI+j+ahwQJSGlFKUaBVL52gWR0CpG9vsZ5zHdX2UKGgGaAloD0MIymq6nmg1ckCUhpRSlGgVTUUBaBZHQKkcJiT+vQp1fZQoaAZoCWgPQwjQXn08NCRwQJSGlFKUaBVLwWgWR0CpHEgJ1JUYdX2UKGgGaAloD0MImbhVEMP7cUCUhpRSlGgVS+JoFkdAqRxIegctG3V9lChoBmgJaA9DCFQ2rKks+nFAlIaUUpRoFUvTaBZHQKkcbNRFZxJ1fZQoaAZoCWgPQwgo84++SVdyQJSGlFKUaBVL0mgWR0CpHIWBreqJdX2UKGgGaAloD0MI51QyABSQcECUhpRSlGgVS9BoFkdAqRztX3g1nHV9lChoBmgJaA9DCOaxZmSQDFNAlIaUUpRoFUvJaBZHQKkdHnVXmvJ1fZQoaAZoCWgPQwj2XRH8r3pzQJSGlFKUaBVL4mgWR0CpHT9Sde6adX2UKGgGaAloD0MIG70aoPSXcECUhpRSlGgVS+FoFkdAqR1Kmbb1y3V9lChoBmgJaA9DCBjt8UK6IGdAlIaUUpRoFU3oA2gWR0CpHWnZ9NN8dX2UKGgGaAloD0MIDhMNUvBXcUCUhpRSlGgVS+ZoFkdAqR17bg0j1XV9lChoBmgJaA9DCLWLaaZ7X3FAlIaUUpRoFUvaaBZHQKkdkcZLqUx1fZQoaAZoCWgPQwgq499n3BJxQJSGlFKUaBVL5WgWR0CpHbSP+4smdX2UKGgGaAloD0MI9DehEMHVcUCUhpRSlGgVS+VoFkdAqR3ejM3ZPHV9lChoBmgJaA9DCFjFG5mHE3FAlIaUUpRoFUvbaBZHQKkezdcB2fV1fZQoaAZoCWgPQwjUKCSZ1ddvQJSGlFKUaBVLwGgWR0CpHwhzvJA/dX2UKGgGaAloD0MIi6VIvhIGZUCUhpRSlGgVTegDaBZHQKkfJmzSkTJ1fZQoaAZoCWgPQwiXcr7Ye1dxQJSGlFKUaBVL42gWR0CpHy2QOnVHdX2UKGgGaAloD0MIuMzpstg7cUCUhpRSlGgVS95oFkdAqR82QMhHLHV9lChoBmgJaA9DCMzwn27g1nJAlIaUUpRoFUvuaBZHQKkfZKf4AS51fZQoaAZoCWgPQwithy8TBedyQJSGlFKUaBVL5WgWR0CpH2mEGqxUdX2UKGgGaAloD0MISZ2AJsIcSUCUhpRSlGgVS5loFkdAqR98cuJ1q3V9lChoBmgJaA9DCMa+ZOMB/nNAlIaUUpRoFUvhaBZHQKkfzK3/gix1fZQoaAZoCWgPQwiV1t8SAHZxQJSGlFKUaBVL1mgWR0CpH9LYwqRVdX2UKGgGaAloD0MI1/uNdpzMcUCUhpRSlGgVS9ZoFkdAqSASN6w+uHV9lChoBmgJaA9DCAKfH0bISXBAlIaUUpRoFUvoaBZHQKkgMafBeol1fZQoaAZoCWgPQwgL7ZxmQaVwQJSGlFKUaBVL9mgWR0CpIIzAeq7zdX2UKGgGaAloD0MInzvB/qtpcUCUhpRSlGgVS/BoFkdAqSDia7VawHV9lChoBmgJaA9DCBLBOLg0qXBAlIaUUpRoFUv/aBZHQKkg5Ks+3Yt1fZQoaAZoCWgPQwggls0cErBwQJSGlFKUaBVLyWgWR0CpIbbcfvF4dX2UKGgGaAloD0MIc77Ye7E5ckCUhpRSlGgVS89oFkdAqSG71dxAB3V9lChoBmgJaA9DCJgZNsq6RHNAlIaUUpRoFUvraBZHQKkhyl+EytV1fZQoaAZoCWgPQwinrnyWp71xQJSGlFKUaBVL3WgWR0CpIdZE+gUUdX2UKGgGaAloD0MIeHsQAjI4cUCUhpRSlGgVS8doFkdAqSHv7gsK9nV9lChoBmgJaA9DCPcA3Zezb29AlIaUUpRoFUvKaBZHQKkh9bhWHUN1fZQoaAZoCWgPQwiYhXZOswFwQJSGlFKUaBVNeAFoFkdAqSIBDPWxyHV9lChoBmgJaA9DCMYzaOhfzXFAlIaUUpRoFUvqaBZHQKkiG4I8hcJ1fZQoaAZoCWgPQwi0dtuF5oNxQJSGlFKUaBVL22gWR0CpIjnnuAqedX2UKGgGaAloD0MI4UIewY3RcUCUhpRSlGgVS91oFkdAqSKNh1DBuXV9lChoBmgJaA9DCBkCgGOPhHFAlIaUUpRoFUvhaBZHQKkik4lQdjp1fZQoaAZoCWgPQwiQMuIC0HpvQJSGlFKUaBVL4GgWR0CpI1HZsbeedX2UKGgGaAloD0MIXyaKkDqncUCUhpRSlGgVTQMBaBZHQKkjaVxCIDZ1fZQoaAZoCWgPQwjK372jBk5xQJSGlFKUaBVNDAFoFkdAqSNpVlwtKHV9lChoBmgJaA9DCH3O3a7XTHBAlIaUUpRoFUvbaBZHQKkjmClrM1V1fZQoaAZoCWgPQwgBofXwJVRxQJSGlFKUaBVL5GgWR0CpI7ApazNVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9762304f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9762309040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f97623090d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9762309160>", "_build": "<function ActorCriticPolicy._build at 0x7f97623091f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9762309280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9762309310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f97623093a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9762309430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f97623094c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9762309550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f97622fed80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 15007744, "_total_timesteps": 15000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671557815362637149, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0005162666666667093, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsaIG07ANdECUhpRSlIwBbJRNDwGMAXSUR0DJ+1titq59dX2UKGgGaAloD0MIG0zD8FF+c0CUhpRSlGgVS65oFkdAyftea0hNd3V9lChoBmgJaA9DCIANiBAX73FAlIaUUpRoFUumaBZHQMn7ZgzpHI91fZQoaAZoCWgPQwjryJHOwEJxQJSGlFKUaBVLq2gWR0DJ/ud3OfNBdX2UKGgGaAloD0MIoDNpUzVLckCUhpRSlGgVS7JoFkdAyf7rkTYdyXV9lChoBmgJaA9DCH79EBts73NAlIaUUpRoFUu9aBZHQMn+8SQPqcF1fZQoaAZoCWgPQwj+1k6UxJBxQJSGlFKUaBVLnmgWR0DJ/vdqQA+7dX2UKGgGaAloD0MIwLM9ekN7c0CUhpRSlGgVS79oFkdAyf79nHNorXV9lChoBmgJaA9DCMrhk04kMHNAlIaUUpRoFUunaBZHQMn/B6jvd/J1fZQoaAZoCWgPQwiTxJJy93hzQJSGlFKUaBVLq2gWR0DJ/w3TTfBOdX2UKGgGaAloD0MIdH6K4wCmckCUhpRSlGgVS7xoFkdAyf8ggMc6vXV9lChoBmgJaA9DCNC0xMqo83JAlIaUUpRoFUu4aBZHQMn/ITwDvE11fZQoaAZoCWgPQwh56SYxyPhzQJSGlFKUaBVLtGgWR0DJ/yKlk6LgdX2UKGgGaAloD0MII7w9CIHfckCUhpRSlGgVTSkBaBZHQMn/J1ivxH51fZQoaAZoCWgPQwhN9zqp70ZyQJSGlFKUaBVLu2gWR0DJ/zQ1NxlydX2UKGgGaAloD0MIdbFppRDKcECUhpRSlGgVS4RoFkdAyf87CGetjnV9lChoBmgJaA9DCM8wtaWOzm9AlIaUUpRoFUvGaBZHQMn/QIKMNtt1fZQoaAZoCWgPQwheoKTAAihzQJSGlFKUaBVLr2gWR0DJ/0GRV6u5dX2UKGgGaAloD0MIcobijrdPckCUhpRSlGgVS7hoFkdAyf9EZUkv9XV9lChoBmgJaA9DCO317o/3NnNAlIaUUpRoFUuSaBZHQMn/R2saKk51fZQoaAZoCWgPQwjtSstI/ehxQJSGlFKUaBVLtmgWR0DJ/0vAEdNndX2UKGgGaAloD0MIDMo0mpx9c0CUhpRSlGgVS6RoFkdAyf9mGpuMuXV9lChoBmgJaA9DCDGx+bh2k3JAlIaUUpRoFUuQaBZHQMn/acSXdCV1fZQoaAZoCWgPQwiV1AloYh1yQJSGlFKUaBVLuGgWR0DJ/21DYywfdX2UKGgGaAloD0MIkncOZagsdECUhpRSlGgVS8doFkdAyf9wby6MBXV9lChoBmgJaA9DCLcqiezDPnJAlIaUUpRoFUvDaBZHQMn/hyncclx1fZQoaAZoCWgPQwh0XmOX6ChzQJSGlFKUaBVLpGgWR0DJ/41v/BFedX2UKGgGaAloD0MIXfsCeuFhckCUhpRSlGgVS69oFkdAyf+TsoDxLHV9lChoBmgJaA9DCLq6Y7FNXXJAlIaUUpRoFUu5aBZHQMn/mc1wYLt1fZQoaAZoCWgPQwix+E1h5RFxQJSGlFKUaBVLo2gWR0DJ/6AUnG83dX2UKGgGaAloD0MIq8/VVuz9c0CUhpRSlGgVS89oFkdAyf+vo6CDmXV9lChoBmgJaA9DCNKpK5+lVHFAlIaUUpRoFUu0aBZHQMn/s16u4gB1fZQoaAZoCWgPQwgnpaDby+hxQJSGlFKUaBVLr2gWR0DJ/7YWpIczdX2UKGgGaAloD0MIog3ABkQ4ckCUhpRSlGgVS6RoFkdAyf+2oddVvXV9lChoBmgJaA9DCKwfm+RHvnJAlIaUUpRoFUugaBZHQMn/uTGPxQV1fZQoaAZoCWgPQwiKAKd3cRJyQJSGlFKUaBVLtmgWR0DJ/78W9DhMdX2UKGgGaAloD0MIi4wOSIITdECUhpRSlGgVS8xoFkdAyf/KPXkHU3V9lChoBmgJaA9DCE1J1uFopXJAlIaUUpRoFUuTaBZHQMn/1HlOoHd1fZQoaAZoCWgPQwiLUGwFTWBzQJSGlFKUaBVLs2gWR0DJ/+CT8pCsdX2UKGgGaAloD0MIm1jgK7oVckCUhpRSlGgVS7BoFkdAyf/iDWbw0HV9lChoBmgJaA9DCGkbf6Iy23NAlIaUUpRoFUvDaBZHQMn/8kgW8Ad1fZQoaAZoCWgPQwihR4ye2zpvQJSGlFKUaBVLo2gWR0DJ//vcDbJwdX2UKGgGaAloD0MIWycux6uGc0CUhpRSlGgVS6NoFkdAygACJWNm2HV9lChoBmgJaA9DCO6Yuit7jXJAlIaUUpRoFUu4aBZHQMoABCN83Mp1fZQoaAZoCWgPQwiCGylbJLpwQJSGlFKUaBVLnmgWR0DKAATr3TNMdX2UKGgGaAloD0MIJQNAFbcjcUCUhpRSlGgVS6RoFkdAygAO0dilSHV9lChoBmgJaA9DCA/Tvrk/JHJAlIaUUpRoFUuPaBZHQMoAEA93bEh1fZQoaAZoCWgPQwhM4UGz61ZxQJSGlFKUaBVLm2gWR0DKAB5tSAH3dX2UKGgGaAloD0MIHw4Sovxhc0CUhpRSlGgVS6VoFkdAygAiF0PpZHV9lChoBmgJaA9DCB/ZXDWPtXNAlIaUUpRoFUuoaBZHQMoAJsotthx1fZQoaAZoCWgPQwjyQ6URM7ZxQJSGlFKUaBVLrmgWR0DKAC3GS6lMdX2UKGgGaAloD0MI3JxKBgA4c0CUhpRSlGgVS5toFkdAygAyqEvkBHV9lChoBmgJaA9DCDdxcr+DFXJAlIaUUpRoFUu0aBZHQMoAN8tXgcd1fZQoaAZoCWgPQwhwsDcxJFdwQJSGlFKUaBVLmGgWR0DKADq42CNCdX2UKGgGaAloD0MI1edqK/bnQUCUhpRSlGgVS2hoFkdAygBU/cFhX3V9lChoBmgJaA9DCC6M9KK2BHFAlIaUUpRoFUuVaBZHQMoAVYlQdjp1fZQoaAZoCWgPQwhznNuEe3RyQJSGlFKUaBVLs2gWR0DKAFnbZezEdX2UKGgGaAloD0MIeT2YFN/FcECUhpRSlGgVS45oFkdAygBgpazNU3V9lChoBmgJaA9DCNdrelAQkHBAlIaUUpRoFUuXaBZHQMoAYLBTGYN1fZQoaAZoCWgPQwjSGK2jKn1zQJSGlFKUaBVLw2gWR0DKAGM/MW43dX2UKGgGaAloD0MIvwrw3Wb5cUCUhpRSlGgVS5FoFkdAygBlbB42THV9lChoBmgJaA9DCDj27LlMVnNAlIaUUpRoFUuoaBZHQMoAc/8EV351fZQoaAZoCWgPQwgcYVERJ1dyQJSGlFKUaBVLwGgWR0DKAJBdSl3ydX2UKGgGaAloD0MItafknFizckCUhpRSlGgVS6toFkdAygCSVGCqZXV9lChoBmgJaA9DCIcW2c53/XJAlIaUUpRoFUutaBZHQMoAnIoNNJx1fZQoaAZoCWgPQwgEqRQ7mvJxQJSGlFKUaBVLmWgWR0DKAKOnQ6ZIdX2UKGgGaAloD0MIPfIHA89HT0CUhpRSlGgVS3FoFkdAygCkMH8jzXV9lChoBmgJaA9DCFnbFI+Lc3FAlIaUUpRoFUuuaBZHQMoApPKMefZ1fZQoaAZoCWgPQwhAo3TpX9VyQJSGlFKUaBVLxGgWR0DKAKgZEUj+dX2UKGgGaAloD0MIl1ZD4t5WcECUhpRSlGgVS6VoFkdAygCpLqUu+XV9lChoBmgJaA9DCAJLrmJxQHRAlIaUUpRoFUvBaBZHQMoAtqrq+rV1fZQoaAZoCWgPQwgR/dr6qbdzQJSGlFKUaBVLpmgWR0DKAMfsVtXQdX2UKGgGaAloD0MIzGPNyOA3ckCUhpRSlGgVS5toFkdAygDMJyhi9nV9lChoBmgJaA9DCEnXTL4Z8nNAlIaUUpRoFUu8aBZHQMoA3PCMxXZ1fZQoaAZoCWgPQwg0ZacfFMNxQJSGlFKUaBVLt2gWR0DKAOPEVFhHdX2UKGgGaAloD0MIKeeLvVcNdECUhpRSlGgVS7xoFkdAygDkmzByj3V9lChoBmgJaA9DCF9DcFzG60RAlIaUUpRoFUthaBZHQMoA6IAn2Ix1fZQoaAZoCWgPQwi6oSk7vUpzQJSGlFKUaBVLvmgWR0DKAOsqtozvdX2UKGgGaAloD0MIbToCuBkhcUCUhpRSlGgVS6JoFkdAygEEvNeMQ3V9lChoBmgJaA9DCDScMjff2XJAlIaUUpRoFUuHaBZHQMoBBgyM1j11fZQoaAZoCWgPQwhGX0GaMWtxQJSGlFKUaBVLnWgWR0DKAQ5jJ+2FdX2UKGgGaAloD0MIc0f/yzUjckCUhpRSlGgVS5doFkdAygER00WM0nV9lChoBmgJaA9DCJZbWg0JknJAlIaUUpRoFUu7aBZHQMoBGfc32mJ1fZQoaAZoCWgPQwh/ox03vHx0QJSGlFKUaBVL/GgWR0DKASrByjpLdX2UKGgGaAloD0MIdoh/2NLWc0CUhpRSlGgVS7toFkdAygExAM2FWXV9lChoBmgJaA9DCE/OUNyxU3FAlIaUUpRoFUuqaBZHQMoBNH003wV1fZQoaAZoCWgPQwgg8MAAwjF0QJSGlFKUaBVLyGgWR0DKATuiQDFIdX2UKGgGaAloD0MIYCFzZRAxckCUhpRSlGgVS6ZoFkdAygFDXAdn03V9lChoBmgJaA9DCANgPIMG9HFAlIaUUpRoFUu3aBZHQMoBUxiw0O51fZQoaAZoCWgPQwiP/pdrEWVyQJSGlFKUaBVLnWgWR0DKAVdy1eBydX2UKGgGaAloD0MI+l5DcNx3c0CUhpRSlGgVS51oFkdAygFcEnssx3V9lChoBmgJaA9DCDCBW3fzVnNAlIaUUpRoFUu2aBZHQMoBacslLOB1fZQoaAZoCWgPQwiE1O3s6xhzQJSGlFKUaBVLwWgWR0DKAWqVpsXSdX2UKGgGaAloD0MIMgG/RtKTcECUhpRSlGgVS7JoFkdAygFtWLgn+nV9lChoBmgJaA9DCKTGhJjL3HBAlIaUUpRoFUueaBZHQMoBdxT0g8t1fZQoaAZoCWgPQwhm3NRA849zQJSGlFKUaBVLpGgWR0DKAXwmb9ZSdX2UKGgGaAloD0MIlIRE2ka8cUCUhpRSlGgVS6FoFkdAygGEONHYpXV9lChoBmgJaA9DCPCFyVSBenJAlIaUUpRoFUu3aBZHQMoBkFEy+Ht1fZQoaAZoCWgPQwj7QPLOoR50QJSGlFKUaBVLq2gWR0DKAZL4UN8WdX2UKGgGaAloD0MIYJM16iEjcUCUhpRSlGgVS4NoFkdAygGWUwi7kHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3664, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2JhcnQvZGVlcFJMX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 275.0808641, "std_reward": 16.587344036289252, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T16:17:59.979586"}
 
1
+ {"mean_reward": 289.11391960000003, "std_reward": 20.46743938955138, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T10:11:19.296302"}