bartowski commited on
Commit
bdb4187
1 Parent(s): afd1655

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +60 -230
README.md CHANGED
@@ -1,216 +1,17 @@
1
  ---
2
- pipeline_tag: text-generation
3
- base_model: ibm-granite/granite-20b-code-base
4
- inference: true
5
- license: apache-2.0
6
- datasets:
7
- - bigcode/commitpackft
8
- - TIGER-Lab/MathInstruct
9
- - meta-math/MetaMathQA
10
- - glaiveai/glaive-code-assistant-v3
11
- - glaive-function-calling-v2
12
- - bugdaryan/sql-create-context-instruction
13
- - garage-bAInd/Open-Platypus
14
- - nvidia/HelpSteer
15
- metrics:
16
- - code_eval
17
- library_name: transformers
18
- tags:
19
- - code
20
- - granite
21
- model-index:
22
- - name: granite-20b-code-instruct
23
- results:
24
- - task:
25
- type: text-generation
26
- dataset:
27
- type: bigcode/humanevalpack
28
- name: HumanEvalSynthesis(Python)
29
- metrics:
30
- - name: pass@1
31
- type: pass@1
32
- value: 60.4
33
- veriefied: false
34
- - task:
35
- type: text-generation
36
- dataset:
37
- type: bigcode/humanevalpack
38
- name: HumanEvalSynthesis(JavaScript)
39
- metrics:
40
- - name: pass@1
41
- type: pass@1
42
- value: 53.7
43
- veriefied: false
44
- - task:
45
- type: text-generation
46
- dataset:
47
- type: bigcode/humanevalpack
48
- name: HumanEvalSynthesis(Java)
49
- metrics:
50
- - name: pass@1
51
- type: pass@1
52
- value: 58.5
53
- veriefied: false
54
- - task:
55
- type: text-generation
56
- dataset:
57
- type: bigcode/humanevalpack
58
- name: HumanEvalSynthesis(Go)
59
- metrics:
60
- - name: pass@1
61
- type: pass@1
62
- value: 42.1
63
- veriefied: false
64
- - task:
65
- type: text-generation
66
- dataset:
67
- type: bigcode/humanevalpack
68
- name: HumanEvalSynthesis(C++)
69
- metrics:
70
- - name: pass@1
71
- type: pass@1
72
- value: 45.7
73
- veriefied: false
74
- - task:
75
- type: text-generation
76
- dataset:
77
- type: bigcode/humanevalpack
78
- name: HumanEvalSynthesis(Rust)
79
- metrics:
80
- - name: pass@1
81
- type: pass@1
82
- value: 42.7
83
- veriefied: false
84
- - task:
85
- type: text-generation
86
- dataset:
87
- type: bigcode/humanevalpack
88
- name: HumanEvalExplain(Python)
89
- metrics:
90
- - name: pass@1
91
- type: pass@1
92
- value: 44.5
93
- veriefied: false
94
- - task:
95
- type: text-generation
96
- dataset:
97
- type: bigcode/humanevalpack
98
- name: HumanEvalExplain(JavaScript)
99
- metrics:
100
- - name: pass@1
101
- type: pass@1
102
- value: 42.7
103
- veriefied: false
104
- - task:
105
- type: text-generation
106
- dataset:
107
- type: bigcode/humanevalpack
108
- name: HumanEvalExplain(Java)
109
- metrics:
110
- - name: pass@1
111
- type: pass@1
112
- value: 49.4
113
- veriefied: false
114
- - task:
115
- type: text-generation
116
- dataset:
117
- type: bigcode/humanevalpack
118
- name: HumanEvalExplain(Go)
119
- metrics:
120
- - name: pass@1
121
- type: pass@1
122
- value: 32.3
123
- veriefied: false
124
- - task:
125
- type: text-generation
126
- dataset:
127
- type: bigcode/humanevalpack
128
- name: HumanEvalExplain(C++)
129
- metrics:
130
- - name: pass@1
131
- type: pass@1
132
- value: 42.1
133
- veriefied: false
134
- - task:
135
- type: text-generation
136
- dataset:
137
- type: bigcode/humanevalpack
138
- name: HumanEvalExplain(Rust)
139
- metrics:
140
- - name: pass@1
141
- type: pass@1
142
- value: 18.3
143
- veriefied: false
144
- - task:
145
- type: text-generation
146
- dataset:
147
- type: bigcode/humanevalpack
148
- name: HumanEvalFix(Python)
149
- metrics:
150
- - name: pass@1
151
- type: pass@1
152
- value: 43.9
153
- veriefied: false
154
- - task:
155
- type: text-generation
156
- dataset:
157
- type: bigcode/humanevalpack
158
- name: HumanEvalFix(JavaScript)
159
- metrics:
160
- - name: pass@1
161
- type: pass@1
162
- value: 43.9
163
- veriefied: false
164
- - task:
165
- type: text-generation
166
- dataset:
167
- type: bigcode/humanevalpack
168
- name: HumanEvalFix(Java)
169
- metrics:
170
- - name: pass@1
171
- type: pass@1
172
- value: 45.7
173
- veriefied: false
174
- - task:
175
- type: text-generation
176
- dataset:
177
- type: bigcode/humanevalpack
178
- name: HumanEvalFix(Go)
179
- metrics:
180
- - name: pass@1
181
- type: pass@1
182
- value: 41.5
183
- veriefied: false
184
- - task:
185
- type: text-generation
186
- dataset:
187
- type: bigcode/humanevalpack
188
- name: HumanEvalFix(C++)
189
- metrics:
190
- - name: pass@1
191
- type: pass@1
192
- value: 41.5
193
- veriefied: false
194
- - task:
195
- type: text-generation
196
- dataset:
197
- type: bigcode/humanevalpack
198
- name: HumanEvalFix(Rust)
199
- metrics:
200
- - name: pass@1
201
- type: pass@1
202
- value: 29.9
203
- veriefied: false
204
  quantized_by: bartowski
 
205
  ---
206
 
207
  ## Llamacpp imatrix Quantizations of granite-20b-code-instruct
208
 
209
- Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b2940">b2940</a> for quantization.
210
 
211
  Original model: https://huggingface.co/ibm-granite/granite-20b-code-instruct
212
 
213
- All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/b6ac44691e994344625687afe3263b3a)
 
 
214
 
215
  ## Prompt format
216
 
@@ -223,34 +24,62 @@ Question:
223
 
224
  Answer:
225
 
 
 
226
  ```
227
 
 
 
 
 
228
  ## Download a file (not the whole branch) from below:
229
 
230
- | Filename | Quant type | File Size | Description |
231
- | -------- | ---------- | --------- | ----------- |
232
- | [granite-20b-code-instruct-Q8_0.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q8_0.gguf) | Q8_0 | 21.48GB | Extremely high quality, generally unneeded but max available quant. |
233
- | [granite-20b-code-instruct-Q6_K.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q6_K.gguf) | Q6_K | 16.63GB | Very high quality, near perfect, *recommended*. |
234
- | [granite-20b-code-instruct-Q5_K_M.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q5_K_M.gguf) | Q5_K_M | 14.80GB | High quality, *recommended*. |
235
- | [granite-20b-code-instruct-Q5_K_S.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q5_K_S.gguf) | Q5_K_S | 14.01GB | High quality, *recommended*. |
236
- | [granite-20b-code-instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q4_K_M.gguf) | Q4_K_M | 12.82GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
237
- | [granite-20b-code-instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q4_K_S.gguf) | Q4_K_S | 11.66GB | Slightly lower quality with more space savings, *recommended*. |
238
- | [granite-20b-code-instruct-IQ4_NL.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ4_NL.gguf) | IQ4_NL | 11.55GB | Decent quality, slightly smaller than Q4_K_S with similar performance *recommended*. |
239
- | [granite-20b-code-instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ4_XS.gguf) | IQ4_XS | 10.93GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
240
- | [granite-20b-code-instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q3_K_L.gguf) | Q3_K_L | 11.73GB | Lower quality but usable, good for low RAM availability. |
241
- | [granite-20b-code-instruct-Q3_K_M.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q3_K_M.gguf) | Q3_K_M | 10.56GB | Even lower quality. |
242
- | [granite-20b-code-instruct-IQ3_M.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ3_M.gguf) | IQ3_M | 9.58GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
243
- | [granite-20b-code-instruct-IQ3_S.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ3_S.gguf) | IQ3_S | 8.93GB | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. |
244
- | [granite-20b-code-instruct-Q3_K_S.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q3_K_S.gguf) | Q3_K_S | 8.93GB | Low quality, not recommended. |
245
- | [granite-20b-code-instruct-IQ3_XS.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ3_XS.gguf) | IQ3_XS | 8.65GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
246
- | [granite-20b-code-instruct-IQ3_XXS.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ3_XXS.gguf) | IQ3_XXS | 8.06GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
247
- | [granite-20b-code-instruct-Q2_K.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q2_K.gguf) | Q2_K | 7.92GB | Very low quality but surprisingly usable. |
248
- | [granite-20b-code-instruct-IQ2_M.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ2_M.gguf) | IQ2_M | 7.05GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
249
- | [granite-20b-code-instruct-IQ2_S.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ2_S.gguf) | IQ2_S | 6.52GB | Very low quality, uses SOTA techniques to be usable. |
250
- | [granite-20b-code-instruct-IQ2_XS.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ2_XS.gguf) | IQ2_XS | 6.15GB | Very low quality, uses SOTA techniques to be usable. |
251
- | [granite-20b-code-instruct-IQ2_XXS.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ2_XXS.gguf) | IQ2_XXS | 5.57GB | Lower quality, uses SOTA techniques to be usable. |
252
- | [granite-20b-code-instruct-IQ1_M.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ1_M.gguf) | IQ1_M | 4.91GB | Extremely low quality, *not* recommended. |
253
- | [granite-20b-code-instruct-IQ1_S.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ1_S.gguf) | IQ1_S | 4.51GB | Extremely low quality, *not* recommended. |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254
 
255
  ## Downloading using huggingface-cli
256
 
@@ -263,13 +92,13 @@ pip install -U "huggingface_hub[cli]"
263
  Then, you can target the specific file you want:
264
 
265
  ```
266
- huggingface-cli download bartowski/granite-20b-code-instruct-GGUF --include "granite-20b-code-instruct-Q4_K_M.gguf" --local-dir ./ --local-dir-use-symlinks False
267
  ```
268
 
269
  If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
270
 
271
  ```
272
- huggingface-cli download bartowski/granite-20b-code-instruct-GGUF --include "granite-20b-code-instruct-Q8_0.gguf/*" --local-dir granite-20b-code-instruct-Q8_0 --local-dir-use-symlinks False
273
  ```
274
 
275
  You can either specify a new local-dir (granite-20b-code-instruct-Q8_0) or download them all in place (./)
@@ -299,3 +128,4 @@ These I-quants can also be used on CPU and Apple Metal, but will be slower than
299
  The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
300
 
301
  Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
 
 
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  quantized_by: bartowski
3
+ pipeline_tag: text-generation
4
  ---
5
 
6
  ## Llamacpp imatrix Quantizations of granite-20b-code-instruct
7
 
8
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3634">b3634</a> for quantization.
9
 
10
  Original model: https://huggingface.co/ibm-granite/granite-20b-code-instruct
11
 
12
+ All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
13
+
14
+ Run them in [LM Studio](https://lmstudio.ai/)
15
 
16
  ## Prompt format
17
 
 
24
 
25
  Answer:
26
 
27
+
28
+ Answer:
29
  ```
30
 
31
+ ## What's new:
32
+
33
+ New model update
34
+
35
  ## Download a file (not the whole branch) from below:
36
 
37
+ | Filename | Quant type | File Size | Split | Description |
38
+ | -------- | ---------- | --------- | ----- | ----------- |
39
+ | [granite-20b-code-instruct-f16.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-f16.gguf) | f16 | 40.24GB | false | Full F16 weights. |
40
+ | [granite-20b-code-instruct-Q8_0.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q8_0.gguf) | Q8_0 | 21.48GB | false | Extremely high quality, generally unneeded but max available quant. |
41
+ | [granite-20b-code-instruct-Q6_K_L.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q6_K_L.gguf) | Q6_K_L | 16.71GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
42
+ | [granite-20b-code-instruct-Q6_K.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q6_K.gguf) | Q6_K | 16.63GB | false | Very high quality, near perfect, *recommended*. |
43
+ | [granite-20b-code-instruct-Q5_K_L.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q5_K_L.gguf) | Q5_K_L | 14.88GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. |
44
+ | [granite-20b-code-instruct-Q5_K_M.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q5_K_M.gguf) | Q5_K_M | 14.81GB | false | High quality, *recommended*. |
45
+ | [granite-20b-code-instruct-Q5_K_S.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q5_K_S.gguf) | Q5_K_S | 14.02GB | false | High quality, *recommended*. |
46
+ | [granite-20b-code-instruct-Q4_K_L.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q4_K_L.gguf) | Q4_K_L | 12.89GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. |
47
+ | [granite-20b-code-instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q4_K_M.gguf) | Q4_K_M | 12.82GB | false | Good quality, default size for must use cases, *recommended*. |
48
+ | [granite-20b-code-instruct-Q3_K_XL.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q3_K_XL.gguf) | Q3_K_XL | 11.81GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
49
+ | [granite-20b-code-instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q3_K_L.gguf) | Q3_K_L | 11.74GB | false | Lower quality but usable, good for low RAM availability. |
50
+ | [granite-20b-code-instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q4_K_S.gguf) | Q4_K_S | 11.67GB | false | Slightly lower quality with more space savings, *recommended*. |
51
+ | [granite-20b-code-instruct-Q4_0.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q4_0.gguf) | Q4_0 | 11.61GB | false | Legacy format, generally not worth using over similarly sized formats |
52
+ | [granite-20b-code-instruct-Q4_0_8_8.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q4_0_8_8.gguf) | Q4_0_8_8 | 11.55GB | false | Optimized for ARM inference. Requires 'sve' support (see link below). |
53
+ | [granite-20b-code-instruct-Q4_0_4_8.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q4_0_4_8.gguf) | Q4_0_4_8 | 11.55GB | false | Optimized for ARM inference. Requires 'i8mm' support (see link below). |
54
+ | [granite-20b-code-instruct-Q4_0_4_4.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q4_0_4_4.gguf) | Q4_0_4_4 | 11.55GB | false | Optimized for ARM inference. Should work well on all ARM chips, pick this if you're unsure. |
55
+ | [granite-20b-code-instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ4_XS.gguf) | IQ4_XS | 10.94GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
56
+ | [granite-20b-code-instruct-Q3_K_M.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q3_K_M.gguf) | Q3_K_M | 10.57GB | false | Low quality. |
57
+ | [granite-20b-code-instruct-IQ3_M.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ3_M.gguf) | IQ3_M | 9.59GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
58
+ | [granite-20b-code-instruct-Q3_K_S.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q3_K_S.gguf) | Q3_K_S | 8.93GB | false | Low quality, not recommended. |
59
+ | [granite-20b-code-instruct-IQ3_XS.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ3_XS.gguf) | IQ3_XS | 8.66GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
60
+ | [granite-20b-code-instruct-Q2_K_L.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q2_K_L.gguf) | Q2_K_L | 8.00GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. |
61
+ | [granite-20b-code-instruct-Q2_K.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-Q2_K.gguf) | Q2_K | 7.93GB | false | Very low quality but surprisingly usable. |
62
+ | [granite-20b-code-instruct-IQ2_M.gguf](https://huggingface.co/bartowski/granite-20b-code-instruct-GGUF/blob/main/granite-20b-code-instruct-IQ2_M.gguf) | IQ2_M | 7.05GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. |
63
+
64
+ ## Q4_0_X_X
65
+
66
+ If you're using an ARM chip, the Q4_0_X_X quants will have a substantial speedup. Check out Q4_0_4_4 speed comparisons [on the original pull request](https://github.com/ggerganov/llama.cpp/pull/5780#pullrequestreview-21657544660)
67
+
68
+ To check which one would work best for your ARM chip, you can check [AArch64 SoC features](https://gpages.juszkiewicz.com.pl/arm-socs-table/arm-socs.html)(thanks EloyOn!).
69
+
70
+ ## Embed/output weights
71
+
72
+ Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to.
73
+
74
+ Some say that this improves the quality, others don't notice any difference. If you use these models PLEASE COMMENT with your findings. I would like feedback that these are actually used and useful so I don't keep uploading quants no one is using.
75
+
76
+ Thanks!
77
+
78
+ ## Credits
79
+
80
+ Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
81
+
82
+ Thank you ZeroWw for the inspiration to experiment with embed/output
83
 
84
  ## Downloading using huggingface-cli
85
 
 
92
  Then, you can target the specific file you want:
93
 
94
  ```
95
+ huggingface-cli download bartowski/granite-20b-code-instruct-GGUF --include "granite-20b-code-instruct-Q4_K_M.gguf" --local-dir ./
96
  ```
97
 
98
  If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
99
 
100
  ```
101
+ huggingface-cli download bartowski/granite-20b-code-instruct-GGUF --include "granite-20b-code-instruct-Q8_0/*" --local-dir ./
102
  ```
103
 
104
  You can either specify a new local-dir (granite-20b-code-instruct-Q8_0) or download them all in place (./)
 
128
  The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
129
 
130
  Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
131
+