bartowski commited on
Commit
ceb4fb9
·
verified ·
1 Parent(s): ef53b06

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +86 -47
README.md CHANGED
@@ -1,72 +1,105 @@
1
  ---
2
- license: other
3
- base_model: meta-llama/Meta-Llama-3-8B
4
- tags:
5
- - generated_from_trainer
6
- - axolotl
7
- model-index:
8
- - name: out
9
- results: []
10
- datasets:
11
- - cognitivecomputations/Dolphin-2.9
12
- - teknium/OpenHermes-2.5
13
- - m-a-p/CodeFeedback-Filtered-Instruction
14
- - cognitivecomputations/dolphin-coder
15
- - cognitivecomputations/samantha-data
16
- - HuggingFaceH4/ultrachat_200k
17
- - microsoft/orca-math-word-problems-200k
18
- - abacusai/SystemChat-1.1
19
- - Locutusque/function-calling-chatml
20
- - internlm/Agent-FLAN
21
  quantized_by: bartowski
22
  pipeline_tag: text-generation
23
  ---
24
 
25
  ## Llamacpp imatrix Quantizations of dolphin-2.9-llama3-8b
26
 
27
- Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b2777">b2777</a> for quantization.
28
 
29
  Original model: https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b
30
 
31
- All quants made using imatrix option with dataset provided by Kalomaze [here](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)
32
 
33
- ## Prompt format
34
 
 
35
 
36
  ```
37
  <|im_start|>system
38
- You are Dolphin, a helpful AI assistant.<|im_end|>
39
  <|im_start|>user
40
  {prompt}<|im_end|>
41
  <|im_start|>assistant
42
  ```
43
 
 
 
 
 
44
  ## Download a file (not the whole branch) from below:
45
 
46
- | Filename | Quant type | File Size | Description |
47
- | -------- | ---------- | --------- | ----------- |
48
- | [dolphin-2.9-llama3-8b-Q8_0.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q8_0.gguf) | Q8_0 | 8.54GB | Extremely high quality, generally unneeded but max available quant. |
49
- | [dolphin-2.9-llama3-8b-Q6_K.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q6_K.gguf) | Q6_K | 6.59GB | Very high quality, near perfect, *recommended*. |
50
- | [dolphin-2.9-llama3-8b-Q5_K_M.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q5_K_M.gguf) | Q5_K_M | 5.73GB | High quality, *recommended*. |
51
- | [dolphin-2.9-llama3-8b-Q5_K_S.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q5_K_S.gguf) | Q5_K_S | 5.59GB | High quality, *recommended*. |
52
- | [dolphin-2.9-llama3-8b-Q4_K_M.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q4_K_M.gguf) | Q4_K_M | 4.92GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
53
- | [dolphin-2.9-llama3-8b-Q4_K_S.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q4_K_S.gguf) | Q4_K_S | 4.69GB | Slightly lower quality with more space savings, *recommended*. |
54
- | [dolphin-2.9-llama3-8b-IQ4_NL.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ4_NL.gguf) | IQ4_NL | 4.67GB | Decent quality, slightly smaller than Q4_K_S with similar performance *recommended*. |
55
- | [dolphin-2.9-llama3-8b-IQ4_XS.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ4_XS.gguf) | IQ4_XS | 4.44GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
56
- | [dolphin-2.9-llama3-8b-Q3_K_L.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q3_K_L.gguf) | Q3_K_L | 4.32GB | Lower quality but usable, good for low RAM availability. |
57
- | [dolphin-2.9-llama3-8b-Q3_K_M.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q3_K_M.gguf) | Q3_K_M | 4.01GB | Even lower quality. |
58
- | [dolphin-2.9-llama3-8b-IQ3_M.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ3_M.gguf) | IQ3_M | 3.78GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
59
- | [dolphin-2.9-llama3-8b-IQ3_S.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ3_S.gguf) | IQ3_S | 3.68GB | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. |
60
- | [dolphin-2.9-llama3-8b-Q3_K_S.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q3_K_S.gguf) | Q3_K_S | 3.66GB | Low quality, not recommended. |
61
- | [dolphin-2.9-llama3-8b-IQ3_XS.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ3_XS.gguf) | IQ3_XS | 3.51GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
62
- | [dolphin-2.9-llama3-8b-IQ3_XXS.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ3_XXS.gguf) | IQ3_XXS | 3.27GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
63
- | [dolphin-2.9-llama3-8b-Q2_K.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q2_K.gguf) | Q2_K | 3.17GB | Very low quality but surprisingly usable. |
64
- | [dolphin-2.9-llama3-8b-IQ2_M.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ2_M.gguf) | IQ2_M | 2.94GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
65
- | [dolphin-2.9-llama3-8b-IQ2_S.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ2_S.gguf) | IQ2_S | 2.75GB | Very low quality, uses SOTA techniques to be usable. |
66
- | [dolphin-2.9-llama3-8b-IQ2_XS.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ2_XS.gguf) | IQ2_XS | 2.60GB | Very low quality, uses SOTA techniques to be usable. |
67
- | [dolphin-2.9-llama3-8b-IQ2_XXS.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ2_XXS.gguf) | IQ2_XXS | 2.39GB | Lower quality, uses SOTA techniques to be usable. |
68
- | [dolphin-2.9-llama3-8b-IQ1_M.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ1_M.gguf) | IQ1_M | 2.16GB | Extremely low quality, *not* recommended. |
69
- | [dolphin-2.9-llama3-8b-IQ1_S.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ1_S.gguf) | IQ1_S | 2.01GB | Extremely low quality, *not* recommended. |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  ## Which file should I choose?
72
 
@@ -92,4 +125,10 @@ These I-quants can also be used on CPU and Apple Metal, but will be slower than
92
 
93
  The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
94
 
 
 
 
 
 
 
95
  Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
 
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  quantized_by: bartowski
3
  pipeline_tag: text-generation
4
  ---
5
 
6
  ## Llamacpp imatrix Quantizations of dolphin-2.9-llama3-8b
7
 
8
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3991">b3991</a> for quantization.
9
 
10
  Original model: https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b
11
 
12
+ All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
13
 
14
+ Run them in [LM Studio](https://lmstudio.ai/)
15
 
16
+ ## Prompt format
17
 
18
  ```
19
  <|im_start|>system
20
+ {system_prompt}<|im_end|>
21
  <|im_start|>user
22
  {prompt}<|im_end|>
23
  <|im_start|>assistant
24
  ```
25
 
26
+ ## What's new:
27
+
28
+ Updating with new quants
29
+
30
  ## Download a file (not the whole branch) from below:
31
 
32
+ | Filename | Quant type | File Size | Split | Description |
33
+ | -------- | ---------- | --------- | ----- | ----------- |
34
+ | [dolphin-2.9-llama3-8b-f16.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-f16.gguf) | f16 | 16.07GB | false | Full F16 weights. |
35
+ | [dolphin-2.9-llama3-8b-Q8_0.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q8_0.gguf) | Q8_0 | 8.54GB | false | Extremely high quality, generally unneeded but max available quant. |
36
+ | [dolphin-2.9-llama3-8b-Q6_K_L.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q6_K_L.gguf) | Q6_K_L | 6.85GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
37
+ | [dolphin-2.9-llama3-8b-Q6_K.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q6_K.gguf) | Q6_K | 6.60GB | false | Very high quality, near perfect, *recommended*. |
38
+ | [dolphin-2.9-llama3-8b-Q5_K_L.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q5_K_L.gguf) | Q5_K_L | 6.06GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. |
39
+ | [dolphin-2.9-llama3-8b-Q5_K_M.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q5_K_M.gguf) | Q5_K_M | 5.73GB | false | High quality, *recommended*. |
40
+ | [dolphin-2.9-llama3-8b-Q5_K_S.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q5_K_S.gguf) | Q5_K_S | 5.60GB | false | High quality, *recommended*. |
41
+ | [dolphin-2.9-llama3-8b-Q4_K_L.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q4_K_L.gguf) | Q4_K_L | 5.31GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. |
42
+ | [dolphin-2.9-llama3-8b-Q4_K_M.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q4_K_M.gguf) | Q4_K_M | 4.92GB | false | Good quality, default size for must use cases, *recommended*. |
43
+ | [dolphin-2.9-llama3-8b-Q3_K_XL.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q3_K_XL.gguf) | Q3_K_XL | 4.78GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
44
+ | [dolphin-2.9-llama3-8b-Q4_K_S.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q4_K_S.gguf) | Q4_K_S | 4.69GB | false | Slightly lower quality with more space savings, *recommended*. |
45
+ | [dolphin-2.9-llama3-8b-Q4_0.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q4_0.gguf) | Q4_0 | 4.68GB | false | Legacy format, generally not worth using over similarly sized formats |
46
+ | [dolphin-2.9-llama3-8b-IQ4_NL.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ4_NL.gguf) | IQ4_NL | 4.68GB | false | Similar to IQ4_XS, but slightly larger. |
47
+ | [dolphin-2.9-llama3-8b-Q4_0_8_8.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q4_0_8_8.gguf) | Q4_0_8_8 | 4.66GB | false | Optimized for ARM inference. Requires 'sve' support (see link below). *Don't use on Mac or Windows*. |
48
+ | [dolphin-2.9-llama3-8b-Q4_0_4_8.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q4_0_4_8.gguf) | Q4_0_4_8 | 4.66GB | false | Optimized for ARM inference. Requires 'i8mm' support (see link below). *Don't use on Mac or Windows*. |
49
+ | [dolphin-2.9-llama3-8b-Q4_0_4_4.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q4_0_4_4.gguf) | Q4_0_4_4 | 4.66GB | false | Optimized for ARM inference. Should work well on all ARM chips, pick this if you're unsure. *Don't use on Mac or Windows*. |
50
+ | [dolphin-2.9-llama3-8b-IQ4_XS.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ4_XS.gguf) | IQ4_XS | 4.45GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
51
+ | [dolphin-2.9-llama3-8b-Q3_K_L.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q3_K_L.gguf) | Q3_K_L | 4.32GB | false | Lower quality but usable, good for low RAM availability. |
52
+ | [dolphin-2.9-llama3-8b-Q3_K_M.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q3_K_M.gguf) | Q3_K_M | 4.02GB | false | Low quality. |
53
+ | [dolphin-2.9-llama3-8b-IQ3_M.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ3_M.gguf) | IQ3_M | 3.78GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
54
+ | [dolphin-2.9-llama3-8b-Q2_K_L.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q2_K_L.gguf) | Q2_K_L | 3.69GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. |
55
+ | [dolphin-2.9-llama3-8b-Q3_K_S.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q3_K_S.gguf) | Q3_K_S | 3.66GB | false | Low quality, not recommended. |
56
+ | [dolphin-2.9-llama3-8b-IQ3_XS.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ3_XS.gguf) | IQ3_XS | 3.52GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
57
+ | [dolphin-2.9-llama3-8b-IQ3_XXS.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ3_XXS.gguf) | IQ3_XXS | 3.27GB | false | Lower quality, new method with decent performance, comparable to Q3 quants. |
58
+ | [dolphin-2.9-llama3-8b-Q2_K.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-Q2_K.gguf) | Q2_K | 3.18GB | false | Very low quality but surprisingly usable. |
59
+ | [dolphin-2.9-llama3-8b-IQ2_M.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ2_M.gguf) | IQ2_M | 2.95GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. |
60
+ | [dolphin-2.9-llama3-8b-IQ2_S.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ2_S.gguf) | IQ2_S | 2.76GB | false | Low quality, uses SOTA techniques to be usable. |
61
+ | [dolphin-2.9-llama3-8b-IQ2_XS.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ2_XS.gguf) | IQ2_XS | 2.61GB | false | Low quality, uses SOTA techniques to be usable. |
62
+ | [dolphin-2.9-llama3-8b-IQ2_XXS.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ2_XXS.gguf) | IQ2_XXS | 2.40GB | false | Very low quality, uses SOTA techniques to be usable. |
63
+ | [dolphin-2.9-llama3-8b-IQ1_M.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ1_M.gguf) | IQ1_M | 2.16GB | false | Extremely low quality, *not* recommended. |
64
+ | [dolphin-2.9-llama3-8b-IQ1_S.gguf](https://huggingface.co/bartowski/dolphin-2.9-llama3-8b-GGUF/blob/main/dolphin-2.9-llama3-8b-IQ1_S.gguf) | IQ1_S | 2.02GB | false | Extremely low quality, *not* recommended. |
65
+
66
+ ## Embed/output weights
67
+
68
+ Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to.
69
+
70
+ Some say that this improves the quality, others don't notice any difference. If you use these models PLEASE COMMENT with your findings. I would like feedback that these are actually used and useful so I don't keep uploading quants no one is using.
71
+
72
+ Thanks!
73
+
74
+ ## Downloading using huggingface-cli
75
+
76
+ First, make sure you have hugginface-cli installed:
77
+
78
+ ```
79
+ pip install -U "huggingface_hub[cli]"
80
+ ```
81
+
82
+ Then, you can target the specific file you want:
83
+
84
+ ```
85
+ huggingface-cli download bartowski/dolphin-2.9-llama3-8b-GGUF --include "dolphin-2.9-llama3-8b-Q4_K_M.gguf" --local-dir ./
86
+ ```
87
+
88
+ If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
89
+
90
+ ```
91
+ huggingface-cli download bartowski/dolphin-2.9-llama3-8b-GGUF --include "dolphin-2.9-llama3-8b-Q8_0/*" --local-dir ./
92
+ ```
93
+
94
+ You can either specify a new local-dir (dolphin-2.9-llama3-8b-Q8_0) or download them all in place (./)
95
+
96
+ ## Q4_0_X_X
97
+
98
+ These are *NOT* for Metal (Apple) offloading, only ARM chips.
99
+
100
+ If you're using an ARM chip, the Q4_0_X_X quants will have a substantial speedup. Check out Q4_0_4_4 speed comparisons [on the original pull request](https://github.com/ggerganov/llama.cpp/pull/5780#pullrequestreview-21657544660)
101
+
102
+ To check which one would work best for your ARM chip, you can check [AArch64 SoC features](https://gpages.juszkiewicz.com.pl/arm-socs-table/arm-socs.html) (thanks EloyOn!).
103
 
104
  ## Which file should I choose?
105
 
 
125
 
126
  The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
127
 
128
+ ## Credits
129
+
130
+ Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
131
+
132
+ Thank you ZeroWw for the inspiration to experiment with embed/output
133
+
134
  Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski