bartowski commited on
Commit
550e587
·
verified ·
1 Parent(s): 342971f

Quant for 5.0

Browse files
README.md CHANGED
@@ -10,69 +10,90 @@ inference:
10
  top_p: 0.95
11
  top_k: 50
12
  repetition_penalty: 1.2
13
- quantized_by: bartowski
14
- pipeline_tag: text-generation
15
  ---
16
 
17
- ## Exllama v2 Quantizations of cosmo-1b
 
18
 
19
- Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.13">turboderp's ExLlamaV2 v0.0.13</a> for quantization.
 
 
20
 
21
- ## The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)
 
22
 
23
- Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
24
 
25
- Conversion was done using the default calibration dataset.
26
 
27
- Default arguments used except when the bits per weight is above 6.0, at that point the lm_head layer is quantized at 8 bits per weight instead of the default 6.
 
28
 
29
- Original model: https://huggingface.co/HuggingFaceTB/cosmo-1b
30
 
 
 
 
 
 
31
 
32
- <a href="https://huggingface.co/bartowski/cosmo-1b-exl2/tree/8_0">8.0 bits per weight</a>
 
 
 
 
 
33
 
34
- <a href="https://huggingface.co/bartowski/cosmo-1b-exl2/tree/6_5">6.5 bits per weight</a>
35
 
36
- <a href="https://huggingface.co/bartowski/cosmo-1b-exl2/tree/5_0">5.0 bits per weight</a>
37
 
38
- <a href="https://huggingface.co/bartowski/cosmo-1b-exl2/tree/4_25">4.25 bits per weight</a>
 
39
 
40
- <a href="https://huggingface.co/bartowski/cosmo-1b-exl2/tree/3_5">3.5 bits per weight</a>
41
 
 
 
42
 
43
- ## Download instructions
44
 
45
- With git:
 
 
46
 
47
- ```shell
48
- git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/cosmo-1b-exl2
 
 
 
 
 
49
  ```
 
 
 
50
 
51
- With huggingface hub (credit to TheBloke for instructions):
52
 
53
- ```shell
54
- pip3 install huggingface-hub
55
- ```
56
 
57
- To download the `main` (only useful if you only care about measurement.json) branch to a folder called `cosmo-1b-exl2`:
58
 
59
- ```shell
60
- mkdir cosmo-1b-exl2
61
- huggingface-cli download bartowski/cosmo-1b-exl2 --local-dir cosmo-1b-exl2 --local-dir-use-symlinks False
62
- ```
63
 
64
- To download from a different branch, add the `--revision` parameter:
65
 
66
- Linux:
 
 
 
67
 
68
- ```shell
69
- mkdir cosmo-1b-exl2-6_5
70
- huggingface-cli download bartowski/cosmo-1b-exl2 --revision 6_5 --local-dir cosmo-1b-exl2-6_5 --local-dir-use-symlinks False
71
- ```
72
 
73
- Windows (which apparently doesn't like _ in folders sometimes?):
74
 
75
- ```shell
76
- mkdir cosmo-1b-exl2-6.5
77
- huggingface-cli download bartowski/cosmo-1b-exl2 --revision 6_5 --local-dir cosmo-1b-exl2-6.5 --local-dir-use-symlinks False
78
- ```
 
10
  top_p: 0.95
11
  top_k: 50
12
  repetition_penalty: 1.2
 
 
13
  ---
14
 
15
+ # Model Summary
16
+ This is a 1.8B model trained on [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia) synthetic dataset.
17
 
18
+ # Training dataset
19
+ The training corpus consisted of 30B tokens, 25B of which are synthetic from Cosmopedia. Since we didn't explore the synthetic generation of code, we augmented the dataset with 5B tokens of non-synthetic sources like the `code-python-0.60-to-1.00` and `web-0.50-to-1.00` subsets of [AutoMathText](https://huggingface.co/datasets/math-ai/AutoMathText). We also added 1M files from [The Stack](https://huggingface.co/datasets/bigcode/the-stack)'s Jupyter Notebooks, converted to script. They tend to have educational code interleaved with text.
20
+ We also included [ultrachat](https://huggingface.co/datasets/stingning/ultrachat) formatted in the chat format of `LlaMa` models, so we don't have to instruction-tune the model after the pre-training. Additionally, we upsampled twice the data from these seed sources twice to help with commonsense and reasoning: stories, AutoMathText & KhanAcademy.
21
 
22
+ We trained for 6 epochs, resulting in a model trained on 180B tokens with a sequence length of 2k, a global batch size of 1.3M tokens and a learning rate of 3e-4 with a cosine schedule for 140k steps.
23
+ We used the tokenizer from [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1/).
24
 
25
+ # How to use
26
 
27
+ Although the model wasn't instruction-tuned after the pre-training. However, given that included UltraChat in the pre-training , you can use it in a Chat format using:
28
 
29
+ ```python
30
+ from transformers import AutoModelForCausalLM, AutoTokenizer
31
 
32
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
33
 
34
+ tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo-1b")
35
+ model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/cosmo-1b").to(device)
36
+ prompt = "Generate a story involving a dog, an astronaut and a baker"
37
+ prompt= tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False)
38
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
39
 
40
+ output = model.generate(**inputs, max_length=300, do_sample=True, temperature=0.6, top_p=0.95, repetition_penalty=1.2)
41
+ print(tokenizer.decode(output[0]))
42
+ ```
43
+ Output:
44
+ ```
45
+ <s><s> [INST] Generate a story involving a dog, an astronaut and a baker [/INST] Once upon a time, there was a sweet little terrier named Max who lived in the bustling city of New York. He loved nothing more than chasing after his owner, Dr. Sarah Johnson, as she worked tirelessly on her latest invention - a spaceship that would take humans to distant galaxies!
46
 
47
+ One day, Dr. Johnson decided it was time for her to leave Earth's atmosphere behind and embark on this exciting adventure with her loyal companion, Max. She knew he had always been fascinated by space travel, so she hoped he would be just as excited about the journey ahead.
48
 
49
+ As they boarded their rocket ship and blasted off into outer space, Max felt both nervous and thrilled at the same time. His ears perked up every time they passed clouds or saw stars twinkling far out from earth. But as days turned into weeks, Max started feeling homesick. The vast emptiness around him made him feel lonely and isolated.
50
 
51
+ Meanwhile back on planet Earth, Mr. Baker was busy baking cookies when suddenly, an idea popped into his head. Why not send some treats along with Dr. Johnson's family? It might make them all feel better knowing that someone else was also having fun exploring the universe.
52
+ ```
53
 
54
+ You can also use the model in text completion mode i.e without applying the chat template, but it might not follow isntructions.
55
 
56
+ ```python
57
+ from transformers import AutoModelForCausalLM, AutoTokenizer
58
 
59
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
60
 
61
+ tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo-1b")
62
+ model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/cosmo-1b").to(device)
63
+ prompt = "Photosynthesis is"
64
 
65
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
66
+ output = model.generate(**inputs, max_length=300, do_sample=True, temperature=0.6, top_p=0.95, repetition_penalty=1.2)
67
+ print(tokenizer.decode(output[0]))
68
+ ```
69
+ Output:
70
+ ```
71
+ <s> Photosynthesis is the process by which green plants, algae and some bacteria convert light energy into chemical energy in order to fuel their metabolic processes. The reaction takes place within specialized cells called chloroplasts. This article focuses on the electron transport chain (ETC), a critical part of photosystem II where most of the solar-driven electrons are passed through before being reduced to water.
72
  ```
73
+ # Evaluation
74
+ Below are the evaluation results of Cosmo-1B. The model is better than TinyLlama 1.1B on ARC-easy, ARC-challenge, OpenBookQA and MMLU, and has comparable performance to Qwen-1.5-1B on ARC-challenge and OpenBookQA.
75
+ However, we notice some perfoamnce gaps compared to Phi-1.5 suggesting a better synthetic generation quality which can be related to the LLM used for generation, topic coverage or prompts.
76
 
77
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/GgWzl6k9BO9jGhGd5O45y.png)
78
 
79
+ # Limitations
 
 
80
 
81
+ This is a small 1.8B model trained on synthetic data, so it might hallucinate, give incomplete or incorrect answers.
82
 
83
+ # Training
 
 
 
84
 
85
+ ## Model
86
 
87
+ - **Architecture:** Llama-2
88
+ - **Pretraining steps:** 120k
89
+ - **Pretraining tokens:** 180B
90
+ - **Precision:** bfloat16
91
 
92
+ ## Hardware
93
+
94
+ - **GPUs:** 160 H100
95
+ - **Training time:** 15hours
96
 
97
+ The training loss:
98
 
99
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/rJobY7F6tqTAvIox1ZGKR.png)
 
 
 
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/fsx/loubna/projects/training/brrr/legacy_examples/llama/scripts/config.json",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2048,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8192,
14
+ "max_position_embeddings": 2048,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "num_key_value_heads": 16,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 10000.0,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.37.2",
26
+ "use_cache": true,
27
+ "vocab_size": 32000
28
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.37.2"
6
+ }
model.safetensors.index.json ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6967140352
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.norm.weight": "model-00002-of-00002.safetensors"
225
+ }
226
+ }
original_repo_url.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ https://huggingface.co/HuggingFaceTB/cosmo-1b
output.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6de021b09e21033cc168977da6bf8d31b4e0267bf47f44e96a8abfbd7fac166
3
+ size 1190287420
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "unk_token": "<unk>"
5
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": null,
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }