bartowski commited on
Commit
9716f21
·
verified ·
1 Parent(s): e986235

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +23 -27
README.md CHANGED
@@ -1,25 +1,11 @@
1
  ---
2
- base_model: mistralai/Mistral-Nemo-Instruct-2407
3
- language:
4
- - en
5
- - fr
6
- - de
7
- - es
8
- - it
9
- - pt
10
- - ru
11
- - zh
12
- - ja
13
- license: apache-2.0
14
- pipeline_tag: text-generation
15
  quantized_by: bartowski
16
- extra_gated_description: If you want to learn more about how we process your personal
17
- data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
18
  ---
19
 
20
  ## Llamacpp imatrix Quantizations of Mistral-Nemo-Instruct-2407
21
 
22
- Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3634">b3634</a> for quantization.
23
 
24
  Original model: https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
25
 
@@ -33,11 +19,14 @@ Run them in [LM Studio](https://lmstudio.ai/)
33
  <s>[INST]{prompt}[/INST]
34
  ```
35
 
 
 
 
 
36
  ## Download a file (not the whole branch) from below:
37
 
38
  | Filename | Quant type | File Size | Split | Description |
39
  | -------- | ---------- | --------- | ----- | ----------- |
40
- | [Mistral-Nemo-Instruct-2407-f32.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-f32.gguf) | f32 | 49.00GB | false | Full F32 weights. |
41
  | [Mistral-Nemo-Instruct-2407-f16.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-f16.gguf) | f16 | 24.50GB | false | Full F16 weights. |
42
  | [Mistral-Nemo-Instruct-2407-Q8_0.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q8_0.gguf) | Q8_0 | 13.02GB | false | Extremely high quality, generally unneeded but max available quant. |
43
  | [Mistral-Nemo-Instruct-2407-Q6_K_L.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q6_K_L.gguf) | Q6_K_L | 10.38GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
@@ -50,9 +39,9 @@ Run them in [LM Studio](https://lmstudio.ai/)
50
  | [Mistral-Nemo-Instruct-2407-Q3_K_XL.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q3_K_XL.gguf) | Q3_K_XL | 7.15GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
51
  | [Mistral-Nemo-Instruct-2407-Q4_K_S.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_K_S.gguf) | Q4_K_S | 7.12GB | false | Slightly lower quality with more space savings, *recommended*. |
52
  | [Mistral-Nemo-Instruct-2407-Q4_0.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_0.gguf) | Q4_0 | 7.09GB | false | Legacy format, generally not worth using over similarly sized formats |
53
- | [Mistral-Nemo-Instruct-2407-Q4_0_8_8.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_0_8_8.gguf) | Q4_0_8_8 | 7.07GB | false | Optimized for ARM and CPU inference, much faster than Q4_0 at similar quality. |
54
- | [Mistral-Nemo-Instruct-2407-Q4_0_4_8.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_0_4_8.gguf) | Q4_0_4_8 | 7.07GB | false | Optimized for ARM and CPU inference, much faster than Q4_0 at similar quality. |
55
- | [Mistral-Nemo-Instruct-2407-Q4_0_4_4.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_0_4_4.gguf) | Q4_0_4_4 | 7.07GB | false | Optimized for ARM and CPU inference, much faster than Q4_0 at similar quality. |
56
  | [Mistral-Nemo-Instruct-2407-IQ4_XS.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-IQ4_XS.gguf) | IQ4_XS | 6.74GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
57
  | [Mistral-Nemo-Instruct-2407-Q3_K_L.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q3_K_L.gguf) | Q3_K_L | 6.56GB | false | Lower quality but usable, good for low RAM availability. |
58
  | [Mistral-Nemo-Instruct-2407-Q3_K_M.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q3_K_M.gguf) | Q3_K_M | 6.08GB | false | Low quality. |
@@ -71,12 +60,6 @@ Some say that this improves the quality, others don't notice any difference. If
71
 
72
  Thanks!
73
 
74
- ## Credits
75
-
76
- Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
77
-
78
- Thank you ZeroWw for the inspiration to experiment with embed/output
79
-
80
  ## Downloading using huggingface-cli
81
 
82
  First, make sure you have hugginface-cli installed:
@@ -99,6 +82,14 @@ huggingface-cli download bartowski/Mistral-Nemo-Instruct-2407-GGUF --include "Mi
99
 
100
  You can either specify a new local-dir (Mistral-Nemo-Instruct-2407-Q8_0) or download them all in place (./)
101
 
 
 
 
 
 
 
 
 
102
  ## Which file should I choose?
103
 
104
  A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
@@ -123,5 +114,10 @@ These I-quants can also be used on CPU and Apple Metal, but will be slower than
123
 
124
  The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
125
 
126
- Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
127
 
 
 
 
 
 
 
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  quantized_by: bartowski
3
+ pipeline_tag: text-generation
 
4
  ---
5
 
6
  ## Llamacpp imatrix Quantizations of Mistral-Nemo-Instruct-2407
7
 
8
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b4014">b4014</a> for quantization.
9
 
10
  Original model: https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
11
 
 
19
  <s>[INST]{prompt}[/INST]
20
  ```
21
 
22
+ ## What's new:
23
+
24
+ Update chat template
25
+
26
  ## Download a file (not the whole branch) from below:
27
 
28
  | Filename | Quant type | File Size | Split | Description |
29
  | -------- | ---------- | --------- | ----- | ----------- |
 
30
  | [Mistral-Nemo-Instruct-2407-f16.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-f16.gguf) | f16 | 24.50GB | false | Full F16 weights. |
31
  | [Mistral-Nemo-Instruct-2407-Q8_0.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q8_0.gguf) | Q8_0 | 13.02GB | false | Extremely high quality, generally unneeded but max available quant. |
32
  | [Mistral-Nemo-Instruct-2407-Q6_K_L.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q6_K_L.gguf) | Q6_K_L | 10.38GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
 
39
  | [Mistral-Nemo-Instruct-2407-Q3_K_XL.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q3_K_XL.gguf) | Q3_K_XL | 7.15GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
40
  | [Mistral-Nemo-Instruct-2407-Q4_K_S.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_K_S.gguf) | Q4_K_S | 7.12GB | false | Slightly lower quality with more space savings, *recommended*. |
41
  | [Mistral-Nemo-Instruct-2407-Q4_0.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_0.gguf) | Q4_0 | 7.09GB | false | Legacy format, generally not worth using over similarly sized formats |
42
+ | [Mistral-Nemo-Instruct-2407-Q4_0_8_8.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_0_8_8.gguf) | Q4_0_8_8 | 7.07GB | false | Optimized for ARM inference. Requires 'sve' support (see link below). *Don't use on Mac or Windows*. |
43
+ | [Mistral-Nemo-Instruct-2407-Q4_0_4_8.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_0_4_8.gguf) | Q4_0_4_8 | 7.07GB | false | Optimized for ARM inference. Requires 'i8mm' support (see link below). *Don't use on Mac or Windows*. |
44
+ | [Mistral-Nemo-Instruct-2407-Q4_0_4_4.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q4_0_4_4.gguf) | Q4_0_4_4 | 7.07GB | false | Optimized for ARM inference. Should work well on all ARM chips, pick this if you're unsure. *Don't use on Mac or Windows*. |
45
  | [Mistral-Nemo-Instruct-2407-IQ4_XS.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-IQ4_XS.gguf) | IQ4_XS | 6.74GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
46
  | [Mistral-Nemo-Instruct-2407-Q3_K_L.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q3_K_L.gguf) | Q3_K_L | 6.56GB | false | Lower quality but usable, good for low RAM availability. |
47
  | [Mistral-Nemo-Instruct-2407-Q3_K_M.gguf](https://huggingface.co/bartowski/Mistral-Nemo-Instruct-2407-GGUF/blob/main/Mistral-Nemo-Instruct-2407-Q3_K_M.gguf) | Q3_K_M | 6.08GB | false | Low quality. |
 
60
 
61
  Thanks!
62
 
 
 
 
 
 
 
63
  ## Downloading using huggingface-cli
64
 
65
  First, make sure you have hugginface-cli installed:
 
82
 
83
  You can either specify a new local-dir (Mistral-Nemo-Instruct-2407-Q8_0) or download them all in place (./)
84
 
85
+ ## Q4_0_X_X
86
+
87
+ These are *NOT* for Metal (Apple) offloading, only ARM chips.
88
+
89
+ If you're using an ARM chip, the Q4_0_X_X quants will have a substantial speedup. Check out Q4_0_4_4 speed comparisons [on the original pull request](https://github.com/ggerganov/llama.cpp/pull/5780#pullrequestreview-21657544660)
90
+
91
+ To check which one would work best for your ARM chip, you can check [AArch64 SoC features](https://gpages.juszkiewicz.com.pl/arm-socs-table/arm-socs.html) (thanks EloyOn!).
92
+
93
  ## Which file should I choose?
94
 
95
  A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
 
114
 
115
  The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
116
 
117
+ ## Credits
118
 
119
+ Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
120
+
121
+ Thank you ZeroWw for the inspiration to experiment with embed/output
122
+
123
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski