bartowski commited on
Commit
ec0fa31
1 Parent(s): 6458901

Llamacpp quants

Browse files
.gitattributes CHANGED
@@ -33,3 +33,26 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Einstein-v6.1-Llama3-8B-IQ1_M.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Einstein-v6.1-Llama3-8B-IQ1_S.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Einstein-v6.1-Llama3-8B-IQ2_M.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Einstein-v6.1-Llama3-8B-IQ2_S.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Einstein-v6.1-Llama3-8B-IQ2_XS.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Einstein-v6.1-Llama3-8B-IQ2_XXS.gguf filter=lfs diff=lfs merge=lfs -text
42
+ Einstein-v6.1-Llama3-8B-IQ3_M.gguf filter=lfs diff=lfs merge=lfs -text
43
+ Einstein-v6.1-Llama3-8B-IQ3_S.gguf filter=lfs diff=lfs merge=lfs -text
44
+ Einstein-v6.1-Llama3-8B-IQ3_XS.gguf filter=lfs diff=lfs merge=lfs -text
45
+ Einstein-v6.1-Llama3-8B-IQ3_XXS.gguf filter=lfs diff=lfs merge=lfs -text
46
+ Einstein-v6.1-Llama3-8B-IQ4_NL.gguf filter=lfs diff=lfs merge=lfs -text
47
+ Einstein-v6.1-Llama3-8B-IQ4_XS.gguf filter=lfs diff=lfs merge=lfs -text
48
+ Einstein-v6.1-Llama3-8B-Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
49
+ Einstein-v6.1-Llama3-8B-Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
50
+ Einstein-v6.1-Llama3-8B-Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
51
+ Einstein-v6.1-Llama3-8B-Q3_K_S.gguf filter=lfs diff=lfs merge=lfs -text
52
+ Einstein-v6.1-Llama3-8B-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
53
+ Einstein-v6.1-Llama3-8B-Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
54
+ Einstein-v6.1-Llama3-8B-Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
55
+ Einstein-v6.1-Llama3-8B-Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
56
+ Einstein-v6.1-Llama3-8B-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
57
+ Einstein-v6.1-Llama3-8B-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
58
+ Einstein-v6.1-Llama3-8B.imatrix filter=lfs diff=lfs merge=lfs -text
Einstein-v6.1-Llama3-8B-IQ1_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21f86f83100d4faff8d856dc5b70ac99faf57ea64189a42dd8308b67f8d8f97c
3
+ size 2161988480
Einstein-v6.1-Llama3-8B-IQ1_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2531e4e4ebdc74a686ad87d5d15f4904ada163c15334dbfb50765f99068bac50
3
+ size 2019644288
Einstein-v6.1-Llama3-8B-IQ2_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23b32985e942521894f2110395f7f2ddbdcb1579d12ab37ee73805e993293e4b
3
+ size 2948299264
Einstein-v6.1-Llama3-8B-IQ2_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f391fd4acb522dbeee5747b60ed209a6efa310fe1324f18c205488f8d745f1a3
3
+ size 2758507008
Einstein-v6.1-Llama3-8B-IQ2_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9393bbba20984793115ab632ece5e6f66a7b79b287abbdb8a3369a390e3c5439
3
+ size 2605798272
Einstein-v6.1-Llama3-8B-IQ2_XXS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f0d41fe152c6ccf26d1a9d33b08af3fcc8e5e48f77da2b225f8fa10eb9838a5
3
+ size 2399228800
Einstein-v6.1-Llama3-8B-IQ3_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8d0d1b8c316add6a983df354c811155a87731b9f727d41f3122cc953f50aeea
3
+ size 3784843904
Einstein-v6.1-Llama3-8B-IQ3_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82fd93002aa3e62fbc407476cf942c12945f34ead033ba44c71e9ac1e91afeb7
3
+ size 3682345600
Einstein-v6.1-Llama3-8B-IQ3_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d285f7591dbbf02a35196bbd551dfcbc64ca4bb96d05e1a844981ad965a076f0
3
+ size 3518767744
Einstein-v6.1-Llama3-8B-IQ3_XXS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aa53ced184d36bd7f438d4fb80ebe24e7b27a09b81676316063b49098429f3b
3
+ size 3274930688
Einstein-v6.1-Llama3-8B-IQ4_NL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff8d91e769c701ae25f66565810d81b868a6f7249223852d79da65032b124cdb
3
+ size 4678011648
Einstein-v6.1-Llama3-8B-IQ4_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a7043679df0c45add3b05e404fa8c9fd36db538deae39f569004ab995f4fcf2
3
+ size 4447684864
Einstein-v6.1-Llama3-8B-Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2298db15ff26cadffe2eb15307e2eb6d278b2a56751ddd6db7f061f2996353f5
3
+ size 3179150336
Einstein-v6.1-Llama3-8B-Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a757b5ed01f279db926ee34e61ab631ead1c5694a36d3da01ae08197af0ee1c
3
+ size 4321976960
Einstein-v6.1-Llama3-8B-Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c010cab23b319e1a20291109a5a99102a27e3b0a4dbd6653caedbe7ea189a320
3
+ size 4018938496
Einstein-v6.1-Llama3-8B-Q3_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9712cf94bf34af86e537ba32bf0ba392e8894cb6e01db232c182c5e139c22c91
3
+ size 3664519808
Einstein-v6.1-Llama3-8B-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:447587bd8f60d9050232148d34fdb2d88b15b2413fd7f8e095a4606ec60b45bf
3
+ size 4920756992
Einstein-v6.1-Llama3-8B-Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:827bbbcaa31ac9cca7b49b60fa4092884e4dea878433153fe4f3b2efb59c0c7a
3
+ size 4692691712
Einstein-v6.1-Llama3-8B-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d34b6328341946a78e691f0de36b1a595efba37156410a6bd2d7ce4481b6530
3
+ size 5733012224
Einstein-v6.1-Llama3-8B-Q5_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2242ad8c5152aadfdb1353b1759a0d4a6eaa207c919e781c5707c983e154bed
3
+ size 5599318784
Einstein-v6.1-Llama3-8B-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:380964006b5eef42f64ff784398742d28f8c3c978f31ba757df4e9e5cee9a016
3
+ size 6596033408
Einstein-v6.1-Llama3-8B-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b381f0d74fe7793a8551e2bf08de7b83ceb2b3935c260b45b946c9a1fb6a5cb5
3
+ size 8540805760
Einstein-v6.1-Llama3-8B.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2661c59f42b44d840d48534e20209a871d868a2e0fd697711e8171389a40539
3
+ size 4988166
README.md ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: other
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ - instruct
9
+ - finetune
10
+ - chatml
11
+ - gpt4
12
+ - synthetic data
13
+ - science
14
+ - physics
15
+ - chemistry
16
+ - biology
17
+ - math
18
+ - llama
19
+ - llama3
20
+ base_model: meta-llama/Meta-Llama-3-8B
21
+ datasets:
22
+ - allenai/ai2_arc
23
+ - camel-ai/physics
24
+ - camel-ai/chemistry
25
+ - camel-ai/biology
26
+ - camel-ai/math
27
+ - metaeval/reclor
28
+ - openbookqa
29
+ - mandyyyyii/scibench
30
+ - derek-thomas/ScienceQA
31
+ - TIGER-Lab/ScienceEval
32
+ - jondurbin/airoboros-3.2
33
+ - LDJnr/Capybara
34
+ - Cot-Alpaca-GPT4-From-OpenHermes-2.5
35
+ - STEM-AI-mtl/Electrical-engineering
36
+ - knowrohit07/saraswati-stem
37
+ - sablo/oasst2_curated
38
+ - lmsys/lmsys-chat-1m
39
+ - TIGER-Lab/MathInstruct
40
+ - bigbio/med_qa
41
+ - meta-math/MetaMathQA-40K
42
+ - openbookqa
43
+ - piqa
44
+ - metaeval/reclor
45
+ - derek-thomas/ScienceQA
46
+ - scibench
47
+ - sciq
48
+ - Open-Orca/SlimOrca
49
+ - migtissera/Synthia-v1.3
50
+ - TIGER-Lab/ScienceEval
51
+ - allenai/WildChat
52
+ - microsoft/orca-math-word-problems-200k
53
+ - openchat/openchat_sharegpt4_dataset
54
+ - teknium/GPTeacher-General-Instruct
55
+ - m-a-p/CodeFeedback-Filtered-Instruction
56
+ - totally-not-an-llm/EverythingLM-data-V3
57
+ - HuggingFaceH4/no_robots
58
+ - OpenAssistant/oasst_top1_2023-08-25
59
+ - WizardLM/WizardLM_evol_instruct_70k
60
+ model-index:
61
+ - name: Einstein-v6.1-Llama3-8B
62
+ results:
63
+ - task:
64
+ type: text-generation
65
+ name: Text Generation
66
+ dataset:
67
+ name: AI2 Reasoning Challenge (25-Shot)
68
+ type: ai2_arc
69
+ config: ARC-Challenge
70
+ split: test
71
+ args:
72
+ num_few_shot: 25
73
+ metrics:
74
+ - type: acc_norm
75
+ value: 62.46
76
+ name: normalized accuracy
77
+ source:
78
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B
79
+ name: Open LLM Leaderboard
80
+ - task:
81
+ type: text-generation
82
+ name: Text Generation
83
+ dataset:
84
+ name: HellaSwag (10-Shot)
85
+ type: hellaswag
86
+ split: validation
87
+ args:
88
+ num_few_shot: 10
89
+ metrics:
90
+ - type: acc_norm
91
+ value: 82.41
92
+ name: normalized accuracy
93
+ source:
94
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B
95
+ name: Open LLM Leaderboard
96
+ - task:
97
+ type: text-generation
98
+ name: Text Generation
99
+ dataset:
100
+ name: MMLU (5-Shot)
101
+ type: cais/mmlu
102
+ config: all
103
+ split: test
104
+ args:
105
+ num_few_shot: 5
106
+ metrics:
107
+ - type: acc
108
+ value: 66.19
109
+ name: accuracy
110
+ source:
111
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B
112
+ name: Open LLM Leaderboard
113
+ - task:
114
+ type: text-generation
115
+ name: Text Generation
116
+ dataset:
117
+ name: TruthfulQA (0-shot)
118
+ type: truthful_qa
119
+ config: multiple_choice
120
+ split: validation
121
+ args:
122
+ num_few_shot: 0
123
+ metrics:
124
+ - type: mc2
125
+ value: 55.1
126
+ source:
127
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B
128
+ name: Open LLM Leaderboard
129
+ - task:
130
+ type: text-generation
131
+ name: Text Generation
132
+ dataset:
133
+ name: Winogrande (5-shot)
134
+ type: winogrande
135
+ config: winogrande_xl
136
+ split: validation
137
+ args:
138
+ num_few_shot: 5
139
+ metrics:
140
+ - type: acc
141
+ value: 79.32
142
+ name: accuracy
143
+ source:
144
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B
145
+ name: Open LLM Leaderboard
146
+ - task:
147
+ type: text-generation
148
+ name: Text Generation
149
+ dataset:
150
+ name: GSM8k (5-shot)
151
+ type: gsm8k
152
+ config: main
153
+ split: test
154
+ args:
155
+ num_few_shot: 5
156
+ metrics:
157
+ - type: acc
158
+ value: 66.11
159
+ name: accuracy
160
+ source:
161
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B
162
+ name: Open LLM Leaderboard
163
+ quantized_by: bartowski
164
+ pipeline_tag: text-generation
165
+ ---
166
+
167
+ ## Llamacpp imatrix Quantizations of Einstein-v6.1-Llama3-8B
168
+
169
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b2777">b2777</a> for quantization.
170
+
171
+ Original model: https://huggingface.co/Weyaxi/Einstein-v6.1-Llama3-8B
172
+
173
+ All quants made using imatrix option with dataset provided by Kalomaze [here](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)
174
+
175
+ ## Prompt format
176
+
177
+ ```
178
+ <|im_start|>system
179
+ {system_prompt}<|im_end|>
180
+ <|im_start|>user
181
+ {prompt}<|im_end|>
182
+ <|im_start|>assistant
183
+
184
+ ```
185
+
186
+ ## Download a file (not the whole branch) from below:
187
+
188
+ | Filename | Quant type | File Size | Description |
189
+ | -------- | ---------- | --------- | ----------- |
190
+ | [Einstein-v6.1-Llama3-8B-Q8_0.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q8_0.gguf) | Q8_0 | 8.54GB | Extremely high quality, generally unneeded but max available quant. |
191
+ | [Einstein-v6.1-Llama3-8B-Q6_K.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q6_K.gguf) | Q6_K | 6.59GB | Very high quality, near perfect, *recommended*. |
192
+ | [Einstein-v6.1-Llama3-8B-Q5_K_M.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q5_K_M.gguf) | Q5_K_M | 5.73GB | High quality, *recommended*. |
193
+ | [Einstein-v6.1-Llama3-8B-Q5_K_S.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q5_K_S.gguf) | Q5_K_S | 5.59GB | High quality, *recommended*. |
194
+ | [Einstein-v6.1-Llama3-8B-Q4_K_M.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q4_K_M.gguf) | Q4_K_M | 4.92GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
195
+ | [Einstein-v6.1-Llama3-8B-Q4_K_S.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q4_K_S.gguf) | Q4_K_S | 4.69GB | Slightly lower quality with more space savings, *recommended*. |
196
+ | [Einstein-v6.1-Llama3-8B-IQ4_NL.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ4_NL.gguf) | IQ4_NL | 4.67GB | Decent quality, slightly smaller than Q4_K_S with similar performance *recommended*. |
197
+ | [Einstein-v6.1-Llama3-8B-IQ4_XS.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ4_XS.gguf) | IQ4_XS | 4.44GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
198
+ | [Einstein-v6.1-Llama3-8B-Q3_K_L.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q3_K_L.gguf) | Q3_K_L | 4.32GB | Lower quality but usable, good for low RAM availability. |
199
+ | [Einstein-v6.1-Llama3-8B-Q3_K_M.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q3_K_M.gguf) | Q3_K_M | 4.01GB | Even lower quality. |
200
+ | [Einstein-v6.1-Llama3-8B-IQ3_M.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ3_M.gguf) | IQ3_M | 3.78GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
201
+ | [Einstein-v6.1-Llama3-8B-IQ3_S.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ3_S.gguf) | IQ3_S | 3.68GB | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. |
202
+ | [Einstein-v6.1-Llama3-8B-Q3_K_S.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q3_K_S.gguf) | Q3_K_S | 3.66GB | Low quality, not recommended. |
203
+ | [Einstein-v6.1-Llama3-8B-IQ3_XS.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ3_XS.gguf) | IQ3_XS | 3.51GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
204
+ | [Einstein-v6.1-Llama3-8B-IQ3_XXS.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ3_XXS.gguf) | IQ3_XXS | 3.27GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
205
+ | [Einstein-v6.1-Llama3-8B-Q2_K.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q2_K.gguf) | Q2_K | 3.17GB | Very low quality but surprisingly usable. |
206
+ | [Einstein-v6.1-Llama3-8B-IQ2_M.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ2_M.gguf) | IQ2_M | 2.94GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
207
+ | [Einstein-v6.1-Llama3-8B-IQ2_S.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ2_S.gguf) | IQ2_S | 2.75GB | Very low quality, uses SOTA techniques to be usable. |
208
+ | [Einstein-v6.1-Llama3-8B-IQ2_XS.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ2_XS.gguf) | IQ2_XS | 2.60GB | Very low quality, uses SOTA techniques to be usable. |
209
+ | [Einstein-v6.1-Llama3-8B-IQ2_XXS.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ2_XXS.gguf) | IQ2_XXS | 2.39GB | Lower quality, uses SOTA techniques to be usable. |
210
+ | [Einstein-v6.1-Llama3-8B-IQ1_M.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ1_M.gguf) | IQ1_M | 2.16GB | Extremely low quality, *not* recommended. |
211
+ | [Einstein-v6.1-Llama3-8B-IQ1_S.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ1_S.gguf) | IQ1_S | 2.01GB | Extremely low quality, *not* recommended. |
212
+
213
+ ## Downloading using huggingface-cli
214
+
215
+ First, make sure you have hugginface-cli installed:
216
+
217
+ ```
218
+ pip install -U "huggingface_hub[cli]"
219
+ ```
220
+
221
+ Then, you can target the specific file you want:
222
+
223
+ ```
224
+ huggingface-cli download bartowski/Einstein-v6.1-Llama3-8B-GGUF --include "Einstein-v6.1-Llama3-8B-Q4_K_M.gguf" --local-dir ./ --local-dir-use-symlinks False
225
+ ```
226
+
227
+ If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
228
+
229
+ ```
230
+ huggingface-cli download bartowski/Einstein-v6.1-Llama3-8B-GGUF --include "Einstein-v6.1-Llama3-8B-Q8_0.gguf/*" --local-dir Einstein-v6.1-Llama3-8B-Q8_0 --local-dir-use-symlinks False
231
+ ```
232
+
233
+ You can either specify a new local-dir (Einstein-v6.1-Llama3-8B-Q8_0) or download them all in place (./)
234
+
235
+ ## Which file should I choose?
236
+
237
+ A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
238
+
239
+ The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
240
+
241
+ If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
242
+
243
+ If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
244
+
245
+ Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
246
+
247
+ If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
248
+
249
+ If you want to get more into the weeds, you can check out this extremely useful feature chart:
250
+
251
+ [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
252
+
253
+ But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
254
+
255
+ These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
256
+
257
+ The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
258
+
259
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski