metadata
license: mit
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: deberta-finetuned-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- type: precision
value: 0.9577488309953239
name: Precision
- type: recall
value: 0.9651632446987546
name: Recall
- type: f1
value: 0.961441743503772
name: F1
- type: accuracy
value: 0.9907182964622135
name: Accuracy
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
metrics:
- type: accuracy
value: 0.9108823919384779
name: Accuracy
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjMwMDBiMzZhZDNjNjM2ODcwNDUxOWJiZDc1NWQyMzliOGQ3NzMzODJlMTlmN2U4MzdjMGY4NjNkMWM2MDhkYiIsInZlcnNpb24iOjF9.610yrrgO0SAb7kZlJhpNJ1cHLrAur0e0dkdSq0YLvLLLDPBOtrtBd0J6Mq4EKTzwWGXuxMM6PlQ0VJTMLC9KAw
- type: precision
value: 0.9308372971460548
name: Precision
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2M0ZThlYTk0ZjZlZTkyYjE3ZWE5Mzc1YTc1Mzc4NWJlMmVlNjllMjg0ZDZiZGU3NmRiZWU3MDFiZTRjOGIzZiIsInZlcnNpb24iOjF9.2YmBNnZeGkTVXSRdek6eBzlg_6QPJKiBLdxKN5ZOwQ7rkD77-fWCmWTJOOha3xCYpSw1bLCgm5e8qPSmB0PyCQ
- type: recall
value: 0.9213792387183881
name: Recall
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTBjZDlkYWVhMDA0ZTUyZjM2MWJiZmVjYTA2MTM2YzZkZGYzNzQwYWUyMmEzMzY1MWU3MjAzNGZkNDJlMTE2MSIsInZlcnNpb24iOjF9.wJr8eIfx5l-89kr8aBlYdpHRs284G4Tx1yTDjMd3TmG16muWGgGtzz7LUL-FKGscAytrRkZi9UOqc1-bzJ_RDQ
- type: f1
value: 0.9260841198729938
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDVjMjJjMzFmNWY5MzJkYTdiY2Q2Mzk1NTdmOTI4YTZhOGNlYTg1NmZlZmEwMmUzMDVkYmVlNTU2OTY4ODNiYSIsInZlcnNpb24iOjF9.pIVNw5vemOtarohSnCIIr109xbFPB_T46D8oFuotMsv2Ag_8tkELfJpGfhxLsMj6Qt8aP-VImc9-gxF1xMwRCA
- type: loss
value: 0.8661637306213379
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmQ1MDQ3ZWJmMzJjZDc3YmM5ZDM5OTg0ZGI1N2RkZTNiNzFjYzE4OTM3NGMyNWFlMGUwMDNhMzE0NjY0ZTk1ZCIsInZlcnNpb24iOjF9.jw2ycVmM3ovkPV_5ydHJKOlyM5YZUVjY9cjdG9x8MeyqsQvGgfNQmqzqDnun575sx6nn3_6tiTNLeVmlAux4Bw
deberta-finetuned-ner
This model is a fine-tuned version of microsoft/deberta-base on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0515
- Precision: 0.9577
- Recall: 0.9652
- F1: 0.9614
- Accuracy: 0.9907
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0742 | 1.0 | 1756 | 0.0526 | 0.9390 | 0.9510 | 0.9450 | 0.9868 |
0.0374 | 2.0 | 3512 | 0.0528 | 0.9421 | 0.9554 | 0.9487 | 0.9879 |
0.0205 | 3.0 | 5268 | 0.0505 | 0.9505 | 0.9636 | 0.9570 | 0.9900 |
0.0089 | 4.0 | 7024 | 0.0528 | 0.9531 | 0.9636 | 0.9583 | 0.9898 |
0.0076 | 5.0 | 8780 | 0.0515 | 0.9577 | 0.9652 | 0.9614 | 0.9907 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1