baptiste-pasquier commited on
Commit
e078f13
·
verified ·
1 Parent(s): cd9ec5f

model improvement

Browse files
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint-*/
README.md CHANGED
@@ -1,19 +1,108 @@
1
  ---
2
- license: mit
3
- datasets:
4
- - allocine
5
  language:
6
  - fr
 
7
  tags:
8
- - camembert
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
- ## TextAttack Model Card
11
 
12
- This `cmarkea/distilcamembert-base` model was fine-tuned using TextAttackand the `allocine` dataset loaded using the `datasets` library. The model was fine-tuned
13
- for 3 epochs with a batch size of 64,
14
- a maximum sequence length of 512, and an initial learning rate of 5e-05.
15
- Since this was a classification task, the model was trained with a cross-entropy loss function.
16
- The best score the model achieved on this task was 0.9707, as measured by the
17
- eval set accuracy, found after 3 epochs.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
- For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
 
 
 
 
1
  ---
 
 
 
2
  language:
3
  - fr
4
+ license: mit
5
  tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - allocine
9
+ metrics:
10
+ - accuracy
11
+ - f1
12
+ - precision
13
+ - recall
14
+ model-index:
15
+ - name: distilcamembert-allocine
16
+ results:
17
+ - task:
18
+ name: Text Classification
19
+ type: text-classification
20
+ dataset:
21
+ name: allocine
22
+ type: allocine
23
+ config: allocine
24
+ split: validation
25
+ args: allocine
26
+ metrics:
27
+ - name: Accuracy
28
+ type: accuracy
29
+ value: 0.9714
30
+ - name: F1
31
+ type: f1
32
+ value: 0.9709909727152854
33
+ - name: Precision
34
+ type: precision
35
+ value: 0.9648256399919372
36
+ - name: Recall
37
+ type: recall
38
+ value: 0.9772356063699469
39
  ---
 
40
 
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # distilcamembert-allocine
45
+
46
+ This model is a fine-tuned version of [cmarkea/distilcamembert-base](https://huggingface.co/cmarkea/distilcamembert-base) on the allocine dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.1066
49
+ - Accuracy: 0.9714
50
+ - F1: 0.9710
51
+ - Precision: 0.9648
52
+ - Recall: 0.9772
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 5e-05
72
+ - train_batch_size: 16
73
+ - eval_batch_size: 16
74
+ - seed: 42
75
+ - gradient_accumulation_steps: 4
76
+ - total_train_batch_size: 64
77
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
78
+ - lr_scheduler_type: linear
79
+ - lr_scheduler_warmup_steps: 500
80
+ - num_epochs: 3
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
85
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
86
+ | 0.1504 | 0.2 | 500 | 0.1290 | 0.9555 | 0.9542 | 0.9614 | 0.9470 |
87
+ | 0.1334 | 0.4 | 1000 | 0.1049 | 0.9624 | 0.9619 | 0.9536 | 0.9703 |
88
+ | 0.1158 | 0.6 | 1500 | 0.1052 | 0.963 | 0.9627 | 0.9498 | 0.9760 |
89
+ | 0.1153 | 0.8 | 2000 | 0.0949 | 0.9661 | 0.9653 | 0.9686 | 0.9620 |
90
+ | 0.1053 | 1.0 | 2500 | 0.0936 | 0.9666 | 0.9663 | 0.9542 | 0.9788 |
91
+ | 0.0755 | 1.2 | 3000 | 0.0987 | 0.97 | 0.9695 | 0.9644 | 0.9748 |
92
+ | 0.0716 | 1.4 | 3500 | 0.1078 | 0.9688 | 0.9684 | 0.9598 | 0.9772 |
93
+ | 0.0688 | 1.6 | 4000 | 0.1051 | 0.9673 | 0.9670 | 0.9552 | 0.9792 |
94
+ | 0.0691 | 1.8 | 4500 | 0.0940 | 0.9709 | 0.9704 | 0.9688 | 0.9720 |
95
+ | 0.0733 | 2.0 | 5000 | 0.1038 | 0.9686 | 0.9683 | 0.9558 | 0.9812 |
96
+ | 0.0476 | 2.2 | 5500 | 0.1066 | 0.9714 | 0.9710 | 0.9648 | 0.9772 |
97
+ | 0.047 | 2.4 | 6000 | 0.1098 | 0.9689 | 0.9686 | 0.9587 | 0.9788 |
98
+ | 0.0431 | 2.6 | 6500 | 0.1110 | 0.9711 | 0.9706 | 0.9666 | 0.9747 |
99
+ | 0.0464 | 2.8 | 7000 | 0.1149 | 0.9697 | 0.9694 | 0.9592 | 0.9798 |
100
+ | 0.0342 | 3.0 | 7500 | 0.1122 | 0.9703 | 0.9699 | 0.9621 | 0.9778 |
101
+
102
+
103
+ ### Framework versions
104
 
105
+ - Transformers 4.26.1
106
+ - Pytorch 1.13.1+cu117
107
+ - Datasets 2.10.1
108
+ - Tokenizers 0.13.2
config.json CHANGED
@@ -28,6 +28,7 @@
28
  "num_hidden_layers": 6,
29
  "pad_token_id": 1,
30
  "position_embedding_type": "absolute",
 
31
  "torch_dtype": "float32",
32
  "transformers_version": "4.26.1",
33
  "type_vocab_size": 1,
 
28
  "num_hidden_layers": 6,
29
  "pad_token_id": 1,
30
  "position_embedding_type": "absolute",
31
+ "problem_type": "single_label_classification",
32
  "torch_dtype": "float32",
33
  "transformers_version": "4.26.1",
34
  "type_vocab_size": 1,
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5cf75746015301662f1a8677d6e45d6c0efba735b927358db3cf1c57975d0875
3
  size 272425205
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:599dd962ba50e977558a4120f60d5b9fc06fb04a4237ab1e2f22015a59c76a92
3
  size 272425205
results/all_results.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.9714,
4
+ "eval_f1": 0.9709909727152854,
5
+ "eval_loss": 0.10657692700624466,
6
+ "eval_precision": 0.9648256399919372,
7
+ "eval_recall": 0.9772356063699469,
8
+ "eval_runtime": 52.9584,
9
+ "eval_samples": 20000,
10
+ "eval_samples_per_second": 377.655,
11
+ "eval_steps_per_second": 23.603,
12
+ "test_accuracy": 0.97035,
13
+ "test_f1": 0.9691900036369305,
14
+ "test_loss": 0.10945655405521393,
15
+ "test_precision": 0.9660279647850855,
16
+ "test_recall": 0.9723728106755629,
17
+ "test_runtime": 54.5698,
18
+ "test_samples": 20000,
19
+ "test_samples_per_second": 366.503,
20
+ "test_steps_per_second": 22.906,
21
+ "total_flos": 4.553211650587354e+16,
22
+ "train_loss": 0.08937127710183461,
23
+ "train_runtime": 4426.0374,
24
+ "train_samples": 160000,
25
+ "train_samples_per_second": 108.449,
26
+ "train_steps_per_second": 1.695
27
+ }
results/eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.9714,
4
+ "eval_f1": 0.9709909727152854,
5
+ "eval_loss": 0.10657692700624466,
6
+ "eval_precision": 0.9648256399919372,
7
+ "eval_recall": 0.9772356063699469,
8
+ "eval_runtime": 52.9584,
9
+ "eval_samples": 20000,
10
+ "eval_samples_per_second": 377.655,
11
+ "eval_steps_per_second": 23.603
12
+ }
results/test_results.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "test_accuracy": 0.97035,
3
+ "test_f1": 0.9691900036369305,
4
+ "test_loss": 0.10945655405521393,
5
+ "test_precision": 0.9660279647850855,
6
+ "test_recall": 0.9723728106755629,
7
+ "test_runtime": 54.5698,
8
+ "test_samples": 20000,
9
+ "test_samples_per_second": 366.503,
10
+ "test_steps_per_second": 22.906
11
+ }
results/train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "total_flos": 4.553211650587354e+16,
4
+ "train_loss": 0.08937127710183461,
5
+ "train_runtime": 4426.0374,
6
+ "train_samples": 160000,
7
+ "train_samples_per_second": 108.449,
8
+ "train_steps_per_second": 1.695
9
+ }
results/trainer_state.json ADDED
@@ -0,0 +1,583 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.9714,
3
+ "best_model_checkpoint": "models/distilcamembert-allocine\\checkpoint-5500",
4
+ "epoch": 3.0,
5
+ "global_step": 7500,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 1.0000000000000001e-07,
13
+ "loss": 0.7377,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.05,
18
+ "learning_rate": 1.25e-05,
19
+ "loss": 0.5782,
20
+ "step": 125
21
+ },
22
+ {
23
+ "epoch": 0.1,
24
+ "learning_rate": 2.5e-05,
25
+ "loss": 0.1837,
26
+ "step": 250
27
+ },
28
+ {
29
+ "epoch": 0.15,
30
+ "learning_rate": 3.7500000000000003e-05,
31
+ "loss": 0.1665,
32
+ "step": 375
33
+ },
34
+ {
35
+ "epoch": 0.2,
36
+ "learning_rate": 5e-05,
37
+ "loss": 0.1504,
38
+ "step": 500
39
+ },
40
+ {
41
+ "epoch": 0.2,
42
+ "eval_accuracy": 0.95545,
43
+ "eval_f1": 0.9541784520442272,
44
+ "eval_loss": 0.1289823055267334,
45
+ "eval_precision": 0.9614467820499534,
46
+ "eval_recall": 0.9470191915067374,
47
+ "eval_runtime": 51.8793,
48
+ "eval_samples_per_second": 385.51,
49
+ "eval_steps_per_second": 24.094,
50
+ "step": 500
51
+ },
52
+ {
53
+ "epoch": 0.25,
54
+ "learning_rate": 4.910714285714286e-05,
55
+ "loss": 0.1469,
56
+ "step": 625
57
+ },
58
+ {
59
+ "epoch": 0.3,
60
+ "learning_rate": 4.8214285714285716e-05,
61
+ "loss": 0.1363,
62
+ "step": 750
63
+ },
64
+ {
65
+ "epoch": 0.35,
66
+ "learning_rate": 4.732142857142857e-05,
67
+ "loss": 0.1332,
68
+ "step": 875
69
+ },
70
+ {
71
+ "epoch": 0.4,
72
+ "learning_rate": 4.642857142857143e-05,
73
+ "loss": 0.1334,
74
+ "step": 1000
75
+ },
76
+ {
77
+ "epoch": 0.4,
78
+ "eval_accuracy": 0.96235,
79
+ "eval_f1": 0.9618984971917219,
80
+ "eval_loss": 0.10494959354400635,
81
+ "eval_precision": 0.9536470352162135,
82
+ "eval_recall": 0.9702939975500204,
83
+ "eval_runtime": 52.9168,
84
+ "eval_samples_per_second": 377.951,
85
+ "eval_steps_per_second": 23.622,
86
+ "step": 1000
87
+ },
88
+ {
89
+ "epoch": 0.45,
90
+ "learning_rate": 4.5535714285714286e-05,
91
+ "loss": 0.1286,
92
+ "step": 1125
93
+ },
94
+ {
95
+ "epoch": 0.5,
96
+ "learning_rate": 4.464285714285715e-05,
97
+ "loss": 0.1322,
98
+ "step": 1250
99
+ },
100
+ {
101
+ "epoch": 0.55,
102
+ "learning_rate": 4.375e-05,
103
+ "loss": 0.1214,
104
+ "step": 1375
105
+ },
106
+ {
107
+ "epoch": 0.6,
108
+ "learning_rate": 4.2857142857142856e-05,
109
+ "loss": 0.1158,
110
+ "step": 1500
111
+ },
112
+ {
113
+ "epoch": 0.6,
114
+ "eval_accuracy": 0.963,
115
+ "eval_f1": 0.962742926190716,
116
+ "eval_loss": 0.10521914064884186,
117
+ "eval_precision": 0.9498311146433539,
118
+ "eval_recall": 0.9760106165781952,
119
+ "eval_runtime": 52.1412,
120
+ "eval_samples_per_second": 383.574,
121
+ "eval_steps_per_second": 23.973,
122
+ "step": 1500
123
+ },
124
+ {
125
+ "epoch": 0.65,
126
+ "learning_rate": 4.196428571428572e-05,
127
+ "loss": 0.1146,
128
+ "step": 1625
129
+ },
130
+ {
131
+ "epoch": 0.7,
132
+ "learning_rate": 4.107142857142857e-05,
133
+ "loss": 0.1154,
134
+ "step": 1750
135
+ },
136
+ {
137
+ "epoch": 0.75,
138
+ "learning_rate": 4.017857142857143e-05,
139
+ "loss": 0.1246,
140
+ "step": 1875
141
+ },
142
+ {
143
+ "epoch": 0.8,
144
+ "learning_rate": 3.928571428571429e-05,
145
+ "loss": 0.1153,
146
+ "step": 2000
147
+ },
148
+ {
149
+ "epoch": 0.8,
150
+ "eval_accuracy": 0.9661,
151
+ "eval_f1": 0.9652770664754685,
152
+ "eval_loss": 0.09492386132478714,
153
+ "eval_precision": 0.9685508735868448,
154
+ "eval_recall": 0.9620253164556962,
155
+ "eval_runtime": 53.0859,
156
+ "eval_samples_per_second": 376.748,
157
+ "eval_steps_per_second": 23.547,
158
+ "step": 2000
159
+ },
160
+ {
161
+ "epoch": 0.85,
162
+ "learning_rate": 3.839285714285715e-05,
163
+ "loss": 0.1064,
164
+ "step": 2125
165
+ },
166
+ {
167
+ "epoch": 0.9,
168
+ "learning_rate": 3.7500000000000003e-05,
169
+ "loss": 0.112,
170
+ "step": 2250
171
+ },
172
+ {
173
+ "epoch": 0.95,
174
+ "learning_rate": 3.6607142857142853e-05,
175
+ "loss": 0.1062,
176
+ "step": 2375
177
+ },
178
+ {
179
+ "epoch": 1.0,
180
+ "learning_rate": 3.571428571428572e-05,
181
+ "loss": 0.1053,
182
+ "step": 2500
183
+ },
184
+ {
185
+ "epoch": 1.0,
186
+ "eval_accuracy": 0.9666,
187
+ "eval_f1": 0.9663374319693611,
188
+ "eval_loss": 0.09356806427240372,
189
+ "eval_precision": 0.95421974522293,
190
+ "eval_recall": 0.9787668436096366,
191
+ "eval_runtime": 52.3106,
192
+ "eval_samples_per_second": 382.331,
193
+ "eval_steps_per_second": 23.896,
194
+ "step": 2500
195
+ },
196
+ {
197
+ "epoch": 1.05,
198
+ "learning_rate": 3.4821428571428574e-05,
199
+ "loss": 0.0797,
200
+ "step": 2625
201
+ },
202
+ {
203
+ "epoch": 1.1,
204
+ "learning_rate": 3.392857142857143e-05,
205
+ "loss": 0.0684,
206
+ "step": 2750
207
+ },
208
+ {
209
+ "epoch": 1.15,
210
+ "learning_rate": 3.303571428571429e-05,
211
+ "loss": 0.0745,
212
+ "step": 2875
213
+ },
214
+ {
215
+ "epoch": 1.2,
216
+ "learning_rate": 3.2142857142857144e-05,
217
+ "loss": 0.0755,
218
+ "step": 3000
219
+ },
220
+ {
221
+ "epoch": 1.2,
222
+ "eval_accuracy": 0.97,
223
+ "eval_f1": 0.9695400548279013,
224
+ "eval_loss": 0.09874136000871658,
225
+ "eval_precision": 0.964350636235104,
226
+ "eval_recall": 0.9747856267864434,
227
+ "eval_runtime": 52.4682,
228
+ "eval_samples_per_second": 381.183,
229
+ "eval_steps_per_second": 23.824,
230
+ "step": 3000
231
+ },
232
+ {
233
+ "epoch": 1.25,
234
+ "learning_rate": 3.125e-05,
235
+ "loss": 0.0771,
236
+ "step": 3125
237
+ },
238
+ {
239
+ "epoch": 1.3,
240
+ "learning_rate": 3.0357142857142857e-05,
241
+ "loss": 0.0733,
242
+ "step": 3250
243
+ },
244
+ {
245
+ "epoch": 1.35,
246
+ "learning_rate": 2.9464285714285718e-05,
247
+ "loss": 0.069,
248
+ "step": 3375
249
+ },
250
+ {
251
+ "epoch": 1.4,
252
+ "learning_rate": 2.857142857142857e-05,
253
+ "loss": 0.0716,
254
+ "step": 3500
255
+ },
256
+ {
257
+ "epoch": 1.4,
258
+ "eval_accuracy": 0.9688,
259
+ "eval_f1": 0.9684370257966616,
260
+ "eval_loss": 0.10781414806842804,
261
+ "eval_precision": 0.9597954682173652,
262
+ "eval_recall": 0.9772356063699469,
263
+ "eval_runtime": 52.2793,
264
+ "eval_samples_per_second": 382.561,
265
+ "eval_steps_per_second": 23.91,
266
+ "step": 3500
267
+ },
268
+ {
269
+ "epoch": 1.45,
270
+ "learning_rate": 2.767857142857143e-05,
271
+ "loss": 0.0781,
272
+ "step": 3625
273
+ },
274
+ {
275
+ "epoch": 1.5,
276
+ "learning_rate": 2.6785714285714288e-05,
277
+ "loss": 0.0725,
278
+ "step": 3750
279
+ },
280
+ {
281
+ "epoch": 1.55,
282
+ "learning_rate": 2.5892857142857148e-05,
283
+ "loss": 0.0755,
284
+ "step": 3875
285
+ },
286
+ {
287
+ "epoch": 1.6,
288
+ "learning_rate": 2.5e-05,
289
+ "loss": 0.0688,
290
+ "step": 4000
291
+ },
292
+ {
293
+ "epoch": 1.6,
294
+ "eval_accuracy": 0.9673,
295
+ "eval_f1": 0.967032967032967,
296
+ "eval_loss": 0.10506118088960648,
297
+ "eval_precision": 0.9551882095200159,
298
+ "eval_recall": 0.9791751735402205,
299
+ "eval_runtime": 52.2828,
300
+ "eval_samples_per_second": 382.535,
301
+ "eval_steps_per_second": 23.908,
302
+ "step": 4000
303
+ },
304
+ {
305
+ "epoch": 1.65,
306
+ "learning_rate": 2.4107142857142858e-05,
307
+ "loss": 0.07,
308
+ "step": 4125
309
+ },
310
+ {
311
+ "epoch": 1.7,
312
+ "learning_rate": 2.3214285714285715e-05,
313
+ "loss": 0.0735,
314
+ "step": 4250
315
+ },
316
+ {
317
+ "epoch": 1.75,
318
+ "learning_rate": 2.2321428571428575e-05,
319
+ "loss": 0.0748,
320
+ "step": 4375
321
+ },
322
+ {
323
+ "epoch": 1.8,
324
+ "learning_rate": 2.1428571428571428e-05,
325
+ "loss": 0.0691,
326
+ "step": 4500
327
+ },
328
+ {
329
+ "epoch": 1.8,
330
+ "eval_accuracy": 0.97095,
331
+ "eval_f1": 0.9703949044585987,
332
+ "eval_loss": 0.09402387589216232,
333
+ "eval_precision": 0.9687658968358938,
334
+ "eval_recall": 0.972029399755002,
335
+ "eval_runtime": 52.5632,
336
+ "eval_samples_per_second": 380.494,
337
+ "eval_steps_per_second": 23.781,
338
+ "step": 4500
339
+ },
340
+ {
341
+ "epoch": 1.85,
342
+ "learning_rate": 2.0535714285714285e-05,
343
+ "loss": 0.0655,
344
+ "step": 4625
345
+ },
346
+ {
347
+ "epoch": 1.9,
348
+ "learning_rate": 1.9642857142857145e-05,
349
+ "loss": 0.0714,
350
+ "step": 4750
351
+ },
352
+ {
353
+ "epoch": 1.95,
354
+ "learning_rate": 1.8750000000000002e-05,
355
+ "loss": 0.0783,
356
+ "step": 4875
357
+ },
358
+ {
359
+ "epoch": 2.0,
360
+ "learning_rate": 1.785714285714286e-05,
361
+ "loss": 0.0733,
362
+ "step": 5000
363
+ },
364
+ {
365
+ "epoch": 2.0,
366
+ "eval_accuracy": 0.96855,
367
+ "eval_f1": 0.9683171309122047,
368
+ "eval_loss": 0.10380826145410538,
369
+ "eval_precision": 0.9557522123893806,
370
+ "eval_recall": 0.9812168231931401,
371
+ "eval_runtime": 52.269,
372
+ "eval_samples_per_second": 382.636,
373
+ "eval_steps_per_second": 23.915,
374
+ "step": 5000
375
+ },
376
+ {
377
+ "epoch": 2.05,
378
+ "learning_rate": 1.6964285714285715e-05,
379
+ "loss": 0.0461,
380
+ "step": 5125
381
+ },
382
+ {
383
+ "epoch": 2.1,
384
+ "learning_rate": 1.6071428571428572e-05,
385
+ "loss": 0.0451,
386
+ "step": 5250
387
+ },
388
+ {
389
+ "epoch": 2.15,
390
+ "learning_rate": 1.5178571428571429e-05,
391
+ "loss": 0.0502,
392
+ "step": 5375
393
+ },
394
+ {
395
+ "epoch": 2.2,
396
+ "learning_rate": 1.4285714285714285e-05,
397
+ "loss": 0.0476,
398
+ "step": 5500
399
+ },
400
+ {
401
+ "epoch": 2.2,
402
+ "eval_accuracy": 0.9714,
403
+ "eval_f1": 0.9709909727152854,
404
+ "eval_loss": 0.10657692700624466,
405
+ "eval_precision": 0.9648256399919372,
406
+ "eval_recall": 0.9772356063699469,
407
+ "eval_runtime": 51.6788,
408
+ "eval_samples_per_second": 387.006,
409
+ "eval_steps_per_second": 24.188,
410
+ "step": 5500
411
+ },
412
+ {
413
+ "epoch": 2.25,
414
+ "learning_rate": 1.3392857142857144e-05,
415
+ "loss": 0.0522,
416
+ "step": 5625
417
+ },
418
+ {
419
+ "epoch": 2.3,
420
+ "learning_rate": 1.25e-05,
421
+ "loss": 0.0476,
422
+ "step": 5750
423
+ },
424
+ {
425
+ "epoch": 2.35,
426
+ "learning_rate": 1.1607142857142857e-05,
427
+ "loss": 0.0404,
428
+ "step": 5875
429
+ },
430
+ {
431
+ "epoch": 2.4,
432
+ "learning_rate": 1.0714285714285714e-05,
433
+ "loss": 0.047,
434
+ "step": 6000
435
+ },
436
+ {
437
+ "epoch": 2.4,
438
+ "eval_accuracy": 0.96895,
439
+ "eval_f1": 0.9686316108501288,
440
+ "eval_loss": 0.10983184725046158,
441
+ "eval_precision": 0.9587041295870413,
442
+ "eval_recall": 0.9787668436096366,
443
+ "eval_runtime": 52.0939,
444
+ "eval_samples_per_second": 383.922,
445
+ "eval_steps_per_second": 23.995,
446
+ "step": 6000
447
+ },
448
+ {
449
+ "epoch": 2.45,
450
+ "learning_rate": 9.821428571428573e-06,
451
+ "loss": 0.0426,
452
+ "step": 6125
453
+ },
454
+ {
455
+ "epoch": 2.5,
456
+ "learning_rate": 8.92857142857143e-06,
457
+ "loss": 0.0396,
458
+ "step": 6250
459
+ },
460
+ {
461
+ "epoch": 2.55,
462
+ "learning_rate": 8.035714285714286e-06,
463
+ "loss": 0.0481,
464
+ "step": 6375
465
+ },
466
+ {
467
+ "epoch": 2.6,
468
+ "learning_rate": 7.142857142857143e-06,
469
+ "loss": 0.0431,
470
+ "step": 6500
471
+ },
472
+ {
473
+ "epoch": 2.6,
474
+ "eval_accuracy": 0.9711,
475
+ "eval_f1": 0.9706211243265224,
476
+ "eval_loss": 0.11103978008031845,
477
+ "eval_precision": 0.9665924276169265,
478
+ "eval_recall": 0.9746835443037974,
479
+ "eval_runtime": 54.7325,
480
+ "eval_samples_per_second": 365.413,
481
+ "eval_steps_per_second": 22.838,
482
+ "step": 6500
483
+ },
484
+ {
485
+ "epoch": 2.65,
486
+ "learning_rate": 6.25e-06,
487
+ "loss": 0.0396,
488
+ "step": 6625
489
+ },
490
+ {
491
+ "epoch": 2.7,
492
+ "learning_rate": 5.357142857142857e-06,
493
+ "loss": 0.0446,
494
+ "step": 6750
495
+ },
496
+ {
497
+ "epoch": 2.75,
498
+ "learning_rate": 4.464285714285715e-06,
499
+ "loss": 0.0362,
500
+ "step": 6875
501
+ },
502
+ {
503
+ "epoch": 2.8,
504
+ "learning_rate": 3.5714285714285714e-06,
505
+ "loss": 0.0464,
506
+ "step": 7000
507
+ },
508
+ {
509
+ "epoch": 2.8,
510
+ "eval_accuracy": 0.9697,
511
+ "eval_f1": 0.9693970306029694,
512
+ "eval_loss": 0.11486733704805374,
513
+ "eval_precision": 0.9592244653208075,
514
+ "eval_recall": 0.9797876684360963,
515
+ "eval_runtime": 52.2973,
516
+ "eval_samples_per_second": 382.429,
517
+ "eval_steps_per_second": 23.902,
518
+ "step": 7000
519
+ },
520
+ {
521
+ "epoch": 2.85,
522
+ "learning_rate": 2.6785714285714285e-06,
523
+ "loss": 0.0431,
524
+ "step": 7125
525
+ },
526
+ {
527
+ "epoch": 2.9,
528
+ "learning_rate": 1.7857142857142857e-06,
529
+ "loss": 0.0343,
530
+ "step": 7250
531
+ },
532
+ {
533
+ "epoch": 2.95,
534
+ "learning_rate": 8.928571428571428e-07,
535
+ "loss": 0.0467,
536
+ "step": 7375
537
+ },
538
+ {
539
+ "epoch": 3.0,
540
+ "learning_rate": 0.0,
541
+ "loss": 0.0342,
542
+ "step": 7500
543
+ },
544
+ {
545
+ "epoch": 3.0,
546
+ "eval_accuracy": 0.9703,
547
+ "eval_f1": 0.9699270959902794,
548
+ "eval_loss": 0.11218974739313126,
549
+ "eval_precision": 0.9621333869023704,
550
+ "eval_recall": 0.9778481012658228,
551
+ "eval_runtime": 52.6026,
552
+ "eval_samples_per_second": 380.209,
553
+ "eval_steps_per_second": 23.763,
554
+ "step": 7500
555
+ },
556
+ {
557
+ "epoch": 3.0,
558
+ "step": 7500,
559
+ "total_flos": 4.553211650587354e+16,
560
+ "train_loss": 0.08937127710183461,
561
+ "train_runtime": 4426.0374,
562
+ "train_samples_per_second": 108.449,
563
+ "train_steps_per_second": 1.695
564
+ },
565
+ {
566
+ "epoch": 3.0,
567
+ "eval_accuracy": 0.9714,
568
+ "eval_f1": 0.9709909727152854,
569
+ "eval_loss": 0.10657692700624466,
570
+ "eval_precision": 0.9648256399919372,
571
+ "eval_recall": 0.9772356063699469,
572
+ "eval_runtime": 52.9584,
573
+ "eval_samples_per_second": 377.655,
574
+ "eval_steps_per_second": 23.603,
575
+ "step": 7500
576
+ }
577
+ ],
578
+ "max_steps": 7500,
579
+ "num_train_epochs": 3,
580
+ "total_flos": 4.553211650587354e+16,
581
+ "trial_name": null,
582
+ "trial_params": null
583
+ }
runs/Mar14_20-34-07_AROZYM/1678822455.5490243/events.out.tfevents.1678822455.AROZYM.16852.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e49c3016098df08fcf83bb49cea9a857c5593a89f2e9b9b3cd1784d323f6bb84
3
+ size 5710
runs/Mar14_20-34-07_AROZYM/events.out.tfevents.1678822455.AROZYM.16852.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0db08e1b90c90067776c1e15d37cc7a8d26a54bc05fb7fc5d9613ed2f30e41b6
3
+ size 21036
runs/Mar14_20-34-07_AROZYM/events.out.tfevents.1678826935.AROZYM.16852.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1594f661d83b602890f5bf87ce4c11486081cd819d02ce577ae50386c0e40b33
3
+ size 512
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3343c132ab69ea1d603a332bf27f2e9c2a72d227f7194ec4d73ebfc0b0f09d4
3
+ size 272534616
tokenizer.json CHANGED
@@ -1,21 +1,7 @@
1
  {
2
  "version": "1.0",
3
- "truncation": {
4
- "direction": "Right",
5
- "max_length": 512,
6
- "strategy": "LongestFirst",
7
- "stride": 0
8
- },
9
- "padding": {
10
- "strategy": {
11
- "Fixed": 512
12
- },
13
- "direction": "Right",
14
- "pad_to_multiple_of": null,
15
- "pad_id": 1,
16
- "pad_type_id": 0,
17
- "pad_token": "<pad>"
18
- },
19
  "added_tokens": [
20
  {
21
  "id": 0,
 
1
  {
2
  "version": "1.0",
3
+ "truncation": null,
4
+ "padding": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "added_tokens": [
6
  {
7
  "id": 0,
train_log.txt DELETED
@@ -1,29 +0,0 @@
1
- Writing logs to ./outputs/2023-02-12-23-30-37-265125/train_log.txt.
2
- Wrote original training args to ./outputs/2023-02-12-23-30-37-265125/training_args.json.
3
- ***** Running training *****
4
- Num examples = 160000
5
- Num epochs = 3
6
- Num clean epochs = 3
7
- Instantaneous batch size per device = 64
8
- Total train batch size (w. parallel, distributed & accumulation) = 64
9
- Gradient accumulation steps = 1
10
- Total optimization steps = 7500
11
- ==========================================================
12
- Epoch 1
13
- Running clean epoch 1/3
14
- Train accuracy: 94.11%
15
- Eval accuracy: 96.77%
16
- Best score found. Saved model to ./outputs/2023-02-12-23-30-37-265125/best_model/
17
- ==========================================================
18
- Epoch 2
19
- Running clean epoch 2/3
20
- Train accuracy: 97.52%
21
- Eval accuracy: 96.95%
22
- Best score found. Saved model to ./outputs/2023-02-12-23-30-37-265125/best_model/
23
- ==========================================================
24
- Epoch 3
25
- Running clean epoch 3/3
26
- Train accuracy: 98.70%
27
- Eval accuracy: 97.07%
28
- Best score found. Saved model to ./outputs/2023-02-12-23-30-37-265125/best_model/
29
- Wrote README to ./outputs/2023-02-12-23-30-37-265125/README.md.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d3e252df7bb1c760edf828ca28397c7d4e9cca53a7f15ee0bea8c2efbfb54af
3
+ size 3515
training_args.json DELETED
@@ -1,38 +0,0 @@
1
- {
2
- "model_name_or_path": "cmarkea/distilcamembert-base",
3
- "attack": null,
4
- "dataset": "allocine",
5
- "task_type": "classification",
6
- "model_max_length": null,
7
- "model_num_labels": null,
8
- "dataset_train_split": "train",
9
- "dataset_eval_split": "validation",
10
- "filter_train_by_labels": null,
11
- "filter_eval_by_labels": null,
12
- "num_epochs": 3,
13
- "num_clean_epochs": 1,
14
- "attack_epoch_interval": 1,
15
- "early_stopping_epochs": null,
16
- "learning_rate": 5e-05,
17
- "num_warmup_steps": 500,
18
- "weight_decay": 0.01,
19
- "per_device_train_batch_size": 64,
20
- "per_device_eval_batch_size": 32,
21
- "gradient_accumulation_steps": 1,
22
- "random_seed": 786,
23
- "parallel": false,
24
- "load_best_model_at_end": false,
25
- "alpha": 1.0,
26
- "num_train_adv_examples": -1,
27
- "query_budget_train": null,
28
- "attack_num_workers_per_device": 1,
29
- "output_dir": "./outputs/2023-02-12-23-30-37-265125",
30
- "checkpoint_interval_steps": null,
31
- "checkpoint_interval_epochs": null,
32
- "save_last": true,
33
- "log_to_tb": false,
34
- "tb_log_dir": null,
35
- "log_to_wandb": false,
36
- "wandb_project": "textattack",
37
- "logging_interval_step": 1
38
- }