baptiste-pasquier
commited on
Commit
•
e078f13
1
Parent(s):
cd9ec5f
model improvement
Browse files- .gitignore +1 -0
- README.md +101 -12
- config.json +1 -0
- pytorch_model.bin +1 -1
- results/all_results.json +27 -0
- results/eval_results.json +12 -0
- results/test_results.json +11 -0
- results/train_results.json +9 -0
- results/trainer_state.json +583 -0
- runs/Mar14_20-34-07_AROZYM/1678822455.5490243/events.out.tfevents.1678822455.AROZYM.16852.1 +3 -0
- runs/Mar14_20-34-07_AROZYM/events.out.tfevents.1678822455.AROZYM.16852.0 +3 -0
- runs/Mar14_20-34-07_AROZYM/events.out.tfevents.1678826935.AROZYM.16852.2 +3 -0
- tf_model.h5 +3 -0
- tokenizer.json +2 -16
- train_log.txt +0 -29
- training_args.bin +3 -0
- training_args.json +0 -38
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
checkpoint-*/
|
README.md
CHANGED
@@ -1,19 +1,108 @@
|
|
1 |
---
|
2 |
-
license: mit
|
3 |
-
datasets:
|
4 |
-
- allocine
|
5 |
language:
|
6 |
- fr
|
|
|
7 |
tags:
|
8 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
-
## TextAttack Model Card
|
11 |
|
12 |
-
This
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
language:
|
3 |
- fr
|
4 |
+
license: mit
|
5 |
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- allocine
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
- f1
|
12 |
+
- precision
|
13 |
+
- recall
|
14 |
+
model-index:
|
15 |
+
- name: distilcamembert-allocine
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Text Classification
|
19 |
+
type: text-classification
|
20 |
+
dataset:
|
21 |
+
name: allocine
|
22 |
+
type: allocine
|
23 |
+
config: allocine
|
24 |
+
split: validation
|
25 |
+
args: allocine
|
26 |
+
metrics:
|
27 |
+
- name: Accuracy
|
28 |
+
type: accuracy
|
29 |
+
value: 0.9714
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value: 0.9709909727152854
|
33 |
+
- name: Precision
|
34 |
+
type: precision
|
35 |
+
value: 0.9648256399919372
|
36 |
+
- name: Recall
|
37 |
+
type: recall
|
38 |
+
value: 0.9772356063699469
|
39 |
---
|
|
|
40 |
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# distilcamembert-allocine
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [cmarkea/distilcamembert-base](https://huggingface.co/cmarkea/distilcamembert-base) on the allocine dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.1066
|
49 |
+
- Accuracy: 0.9714
|
50 |
+
- F1: 0.9710
|
51 |
+
- Precision: 0.9648
|
52 |
+
- Recall: 0.9772
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 5e-05
|
72 |
+
- train_batch_size: 16
|
73 |
+
- eval_batch_size: 16
|
74 |
+
- seed: 42
|
75 |
+
- gradient_accumulation_steps: 4
|
76 |
+
- total_train_batch_size: 64
|
77 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
78 |
+
- lr_scheduler_type: linear
|
79 |
+
- lr_scheduler_warmup_steps: 500
|
80 |
+
- num_epochs: 3
|
81 |
+
|
82 |
+
### Training results
|
83 |
+
|
84 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
85 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
86 |
+
| 0.1504 | 0.2 | 500 | 0.1290 | 0.9555 | 0.9542 | 0.9614 | 0.9470 |
|
87 |
+
| 0.1334 | 0.4 | 1000 | 0.1049 | 0.9624 | 0.9619 | 0.9536 | 0.9703 |
|
88 |
+
| 0.1158 | 0.6 | 1500 | 0.1052 | 0.963 | 0.9627 | 0.9498 | 0.9760 |
|
89 |
+
| 0.1153 | 0.8 | 2000 | 0.0949 | 0.9661 | 0.9653 | 0.9686 | 0.9620 |
|
90 |
+
| 0.1053 | 1.0 | 2500 | 0.0936 | 0.9666 | 0.9663 | 0.9542 | 0.9788 |
|
91 |
+
| 0.0755 | 1.2 | 3000 | 0.0987 | 0.97 | 0.9695 | 0.9644 | 0.9748 |
|
92 |
+
| 0.0716 | 1.4 | 3500 | 0.1078 | 0.9688 | 0.9684 | 0.9598 | 0.9772 |
|
93 |
+
| 0.0688 | 1.6 | 4000 | 0.1051 | 0.9673 | 0.9670 | 0.9552 | 0.9792 |
|
94 |
+
| 0.0691 | 1.8 | 4500 | 0.0940 | 0.9709 | 0.9704 | 0.9688 | 0.9720 |
|
95 |
+
| 0.0733 | 2.0 | 5000 | 0.1038 | 0.9686 | 0.9683 | 0.9558 | 0.9812 |
|
96 |
+
| 0.0476 | 2.2 | 5500 | 0.1066 | 0.9714 | 0.9710 | 0.9648 | 0.9772 |
|
97 |
+
| 0.047 | 2.4 | 6000 | 0.1098 | 0.9689 | 0.9686 | 0.9587 | 0.9788 |
|
98 |
+
| 0.0431 | 2.6 | 6500 | 0.1110 | 0.9711 | 0.9706 | 0.9666 | 0.9747 |
|
99 |
+
| 0.0464 | 2.8 | 7000 | 0.1149 | 0.9697 | 0.9694 | 0.9592 | 0.9798 |
|
100 |
+
| 0.0342 | 3.0 | 7500 | 0.1122 | 0.9703 | 0.9699 | 0.9621 | 0.9778 |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
|
105 |
+
- Transformers 4.26.1
|
106 |
+
- Pytorch 1.13.1+cu117
|
107 |
+
- Datasets 2.10.1
|
108 |
+
- Tokenizers 0.13.2
|
config.json
CHANGED
@@ -28,6 +28,7 @@
|
|
28 |
"num_hidden_layers": 6,
|
29 |
"pad_token_id": 1,
|
30 |
"position_embedding_type": "absolute",
|
|
|
31 |
"torch_dtype": "float32",
|
32 |
"transformers_version": "4.26.1",
|
33 |
"type_vocab_size": 1,
|
|
|
28 |
"num_hidden_layers": 6,
|
29 |
"pad_token_id": 1,
|
30 |
"position_embedding_type": "absolute",
|
31 |
+
"problem_type": "single_label_classification",
|
32 |
"torch_dtype": "float32",
|
33 |
"transformers_version": "4.26.1",
|
34 |
"type_vocab_size": 1,
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 272425205
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:599dd962ba50e977558a4120f60d5b9fc06fb04a4237ab1e2f22015a59c76a92
|
3 |
size 272425205
|
results/all_results.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.9714,
|
4 |
+
"eval_f1": 0.9709909727152854,
|
5 |
+
"eval_loss": 0.10657692700624466,
|
6 |
+
"eval_precision": 0.9648256399919372,
|
7 |
+
"eval_recall": 0.9772356063699469,
|
8 |
+
"eval_runtime": 52.9584,
|
9 |
+
"eval_samples": 20000,
|
10 |
+
"eval_samples_per_second": 377.655,
|
11 |
+
"eval_steps_per_second": 23.603,
|
12 |
+
"test_accuracy": 0.97035,
|
13 |
+
"test_f1": 0.9691900036369305,
|
14 |
+
"test_loss": 0.10945655405521393,
|
15 |
+
"test_precision": 0.9660279647850855,
|
16 |
+
"test_recall": 0.9723728106755629,
|
17 |
+
"test_runtime": 54.5698,
|
18 |
+
"test_samples": 20000,
|
19 |
+
"test_samples_per_second": 366.503,
|
20 |
+
"test_steps_per_second": 22.906,
|
21 |
+
"total_flos": 4.553211650587354e+16,
|
22 |
+
"train_loss": 0.08937127710183461,
|
23 |
+
"train_runtime": 4426.0374,
|
24 |
+
"train_samples": 160000,
|
25 |
+
"train_samples_per_second": 108.449,
|
26 |
+
"train_steps_per_second": 1.695
|
27 |
+
}
|
results/eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.9714,
|
4 |
+
"eval_f1": 0.9709909727152854,
|
5 |
+
"eval_loss": 0.10657692700624466,
|
6 |
+
"eval_precision": 0.9648256399919372,
|
7 |
+
"eval_recall": 0.9772356063699469,
|
8 |
+
"eval_runtime": 52.9584,
|
9 |
+
"eval_samples": 20000,
|
10 |
+
"eval_samples_per_second": 377.655,
|
11 |
+
"eval_steps_per_second": 23.603
|
12 |
+
}
|
results/test_results.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test_accuracy": 0.97035,
|
3 |
+
"test_f1": 0.9691900036369305,
|
4 |
+
"test_loss": 0.10945655405521393,
|
5 |
+
"test_precision": 0.9660279647850855,
|
6 |
+
"test_recall": 0.9723728106755629,
|
7 |
+
"test_runtime": 54.5698,
|
8 |
+
"test_samples": 20000,
|
9 |
+
"test_samples_per_second": 366.503,
|
10 |
+
"test_steps_per_second": 22.906
|
11 |
+
}
|
results/train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"total_flos": 4.553211650587354e+16,
|
4 |
+
"train_loss": 0.08937127710183461,
|
5 |
+
"train_runtime": 4426.0374,
|
6 |
+
"train_samples": 160000,
|
7 |
+
"train_samples_per_second": 108.449,
|
8 |
+
"train_steps_per_second": 1.695
|
9 |
+
}
|
results/trainer_state.json
ADDED
@@ -0,0 +1,583 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.9714,
|
3 |
+
"best_model_checkpoint": "models/distilcamembert-allocine\\checkpoint-5500",
|
4 |
+
"epoch": 3.0,
|
5 |
+
"global_step": 7500,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.0,
|
12 |
+
"learning_rate": 1.0000000000000001e-07,
|
13 |
+
"loss": 0.7377,
|
14 |
+
"step": 1
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.05,
|
18 |
+
"learning_rate": 1.25e-05,
|
19 |
+
"loss": 0.5782,
|
20 |
+
"step": 125
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.1,
|
24 |
+
"learning_rate": 2.5e-05,
|
25 |
+
"loss": 0.1837,
|
26 |
+
"step": 250
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.15,
|
30 |
+
"learning_rate": 3.7500000000000003e-05,
|
31 |
+
"loss": 0.1665,
|
32 |
+
"step": 375
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.2,
|
36 |
+
"learning_rate": 5e-05,
|
37 |
+
"loss": 0.1504,
|
38 |
+
"step": 500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.2,
|
42 |
+
"eval_accuracy": 0.95545,
|
43 |
+
"eval_f1": 0.9541784520442272,
|
44 |
+
"eval_loss": 0.1289823055267334,
|
45 |
+
"eval_precision": 0.9614467820499534,
|
46 |
+
"eval_recall": 0.9470191915067374,
|
47 |
+
"eval_runtime": 51.8793,
|
48 |
+
"eval_samples_per_second": 385.51,
|
49 |
+
"eval_steps_per_second": 24.094,
|
50 |
+
"step": 500
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.25,
|
54 |
+
"learning_rate": 4.910714285714286e-05,
|
55 |
+
"loss": 0.1469,
|
56 |
+
"step": 625
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.3,
|
60 |
+
"learning_rate": 4.8214285714285716e-05,
|
61 |
+
"loss": 0.1363,
|
62 |
+
"step": 750
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.35,
|
66 |
+
"learning_rate": 4.732142857142857e-05,
|
67 |
+
"loss": 0.1332,
|
68 |
+
"step": 875
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.4,
|
72 |
+
"learning_rate": 4.642857142857143e-05,
|
73 |
+
"loss": 0.1334,
|
74 |
+
"step": 1000
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.4,
|
78 |
+
"eval_accuracy": 0.96235,
|
79 |
+
"eval_f1": 0.9618984971917219,
|
80 |
+
"eval_loss": 0.10494959354400635,
|
81 |
+
"eval_precision": 0.9536470352162135,
|
82 |
+
"eval_recall": 0.9702939975500204,
|
83 |
+
"eval_runtime": 52.9168,
|
84 |
+
"eval_samples_per_second": 377.951,
|
85 |
+
"eval_steps_per_second": 23.622,
|
86 |
+
"step": 1000
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.45,
|
90 |
+
"learning_rate": 4.5535714285714286e-05,
|
91 |
+
"loss": 0.1286,
|
92 |
+
"step": 1125
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.5,
|
96 |
+
"learning_rate": 4.464285714285715e-05,
|
97 |
+
"loss": 0.1322,
|
98 |
+
"step": 1250
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.55,
|
102 |
+
"learning_rate": 4.375e-05,
|
103 |
+
"loss": 0.1214,
|
104 |
+
"step": 1375
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.6,
|
108 |
+
"learning_rate": 4.2857142857142856e-05,
|
109 |
+
"loss": 0.1158,
|
110 |
+
"step": 1500
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.6,
|
114 |
+
"eval_accuracy": 0.963,
|
115 |
+
"eval_f1": 0.962742926190716,
|
116 |
+
"eval_loss": 0.10521914064884186,
|
117 |
+
"eval_precision": 0.9498311146433539,
|
118 |
+
"eval_recall": 0.9760106165781952,
|
119 |
+
"eval_runtime": 52.1412,
|
120 |
+
"eval_samples_per_second": 383.574,
|
121 |
+
"eval_steps_per_second": 23.973,
|
122 |
+
"step": 1500
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.65,
|
126 |
+
"learning_rate": 4.196428571428572e-05,
|
127 |
+
"loss": 0.1146,
|
128 |
+
"step": 1625
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.7,
|
132 |
+
"learning_rate": 4.107142857142857e-05,
|
133 |
+
"loss": 0.1154,
|
134 |
+
"step": 1750
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.75,
|
138 |
+
"learning_rate": 4.017857142857143e-05,
|
139 |
+
"loss": 0.1246,
|
140 |
+
"step": 1875
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.8,
|
144 |
+
"learning_rate": 3.928571428571429e-05,
|
145 |
+
"loss": 0.1153,
|
146 |
+
"step": 2000
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.8,
|
150 |
+
"eval_accuracy": 0.9661,
|
151 |
+
"eval_f1": 0.9652770664754685,
|
152 |
+
"eval_loss": 0.09492386132478714,
|
153 |
+
"eval_precision": 0.9685508735868448,
|
154 |
+
"eval_recall": 0.9620253164556962,
|
155 |
+
"eval_runtime": 53.0859,
|
156 |
+
"eval_samples_per_second": 376.748,
|
157 |
+
"eval_steps_per_second": 23.547,
|
158 |
+
"step": 2000
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.85,
|
162 |
+
"learning_rate": 3.839285714285715e-05,
|
163 |
+
"loss": 0.1064,
|
164 |
+
"step": 2125
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.9,
|
168 |
+
"learning_rate": 3.7500000000000003e-05,
|
169 |
+
"loss": 0.112,
|
170 |
+
"step": 2250
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.95,
|
174 |
+
"learning_rate": 3.6607142857142853e-05,
|
175 |
+
"loss": 0.1062,
|
176 |
+
"step": 2375
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 1.0,
|
180 |
+
"learning_rate": 3.571428571428572e-05,
|
181 |
+
"loss": 0.1053,
|
182 |
+
"step": 2500
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 1.0,
|
186 |
+
"eval_accuracy": 0.9666,
|
187 |
+
"eval_f1": 0.9663374319693611,
|
188 |
+
"eval_loss": 0.09356806427240372,
|
189 |
+
"eval_precision": 0.95421974522293,
|
190 |
+
"eval_recall": 0.9787668436096366,
|
191 |
+
"eval_runtime": 52.3106,
|
192 |
+
"eval_samples_per_second": 382.331,
|
193 |
+
"eval_steps_per_second": 23.896,
|
194 |
+
"step": 2500
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 1.05,
|
198 |
+
"learning_rate": 3.4821428571428574e-05,
|
199 |
+
"loss": 0.0797,
|
200 |
+
"step": 2625
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 1.1,
|
204 |
+
"learning_rate": 3.392857142857143e-05,
|
205 |
+
"loss": 0.0684,
|
206 |
+
"step": 2750
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 1.15,
|
210 |
+
"learning_rate": 3.303571428571429e-05,
|
211 |
+
"loss": 0.0745,
|
212 |
+
"step": 2875
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 1.2,
|
216 |
+
"learning_rate": 3.2142857142857144e-05,
|
217 |
+
"loss": 0.0755,
|
218 |
+
"step": 3000
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 1.2,
|
222 |
+
"eval_accuracy": 0.97,
|
223 |
+
"eval_f1": 0.9695400548279013,
|
224 |
+
"eval_loss": 0.09874136000871658,
|
225 |
+
"eval_precision": 0.964350636235104,
|
226 |
+
"eval_recall": 0.9747856267864434,
|
227 |
+
"eval_runtime": 52.4682,
|
228 |
+
"eval_samples_per_second": 381.183,
|
229 |
+
"eval_steps_per_second": 23.824,
|
230 |
+
"step": 3000
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 1.25,
|
234 |
+
"learning_rate": 3.125e-05,
|
235 |
+
"loss": 0.0771,
|
236 |
+
"step": 3125
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 1.3,
|
240 |
+
"learning_rate": 3.0357142857142857e-05,
|
241 |
+
"loss": 0.0733,
|
242 |
+
"step": 3250
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 1.35,
|
246 |
+
"learning_rate": 2.9464285714285718e-05,
|
247 |
+
"loss": 0.069,
|
248 |
+
"step": 3375
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 1.4,
|
252 |
+
"learning_rate": 2.857142857142857e-05,
|
253 |
+
"loss": 0.0716,
|
254 |
+
"step": 3500
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 1.4,
|
258 |
+
"eval_accuracy": 0.9688,
|
259 |
+
"eval_f1": 0.9684370257966616,
|
260 |
+
"eval_loss": 0.10781414806842804,
|
261 |
+
"eval_precision": 0.9597954682173652,
|
262 |
+
"eval_recall": 0.9772356063699469,
|
263 |
+
"eval_runtime": 52.2793,
|
264 |
+
"eval_samples_per_second": 382.561,
|
265 |
+
"eval_steps_per_second": 23.91,
|
266 |
+
"step": 3500
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 1.45,
|
270 |
+
"learning_rate": 2.767857142857143e-05,
|
271 |
+
"loss": 0.0781,
|
272 |
+
"step": 3625
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 1.5,
|
276 |
+
"learning_rate": 2.6785714285714288e-05,
|
277 |
+
"loss": 0.0725,
|
278 |
+
"step": 3750
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 1.55,
|
282 |
+
"learning_rate": 2.5892857142857148e-05,
|
283 |
+
"loss": 0.0755,
|
284 |
+
"step": 3875
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 1.6,
|
288 |
+
"learning_rate": 2.5e-05,
|
289 |
+
"loss": 0.0688,
|
290 |
+
"step": 4000
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 1.6,
|
294 |
+
"eval_accuracy": 0.9673,
|
295 |
+
"eval_f1": 0.967032967032967,
|
296 |
+
"eval_loss": 0.10506118088960648,
|
297 |
+
"eval_precision": 0.9551882095200159,
|
298 |
+
"eval_recall": 0.9791751735402205,
|
299 |
+
"eval_runtime": 52.2828,
|
300 |
+
"eval_samples_per_second": 382.535,
|
301 |
+
"eval_steps_per_second": 23.908,
|
302 |
+
"step": 4000
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 1.65,
|
306 |
+
"learning_rate": 2.4107142857142858e-05,
|
307 |
+
"loss": 0.07,
|
308 |
+
"step": 4125
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 1.7,
|
312 |
+
"learning_rate": 2.3214285714285715e-05,
|
313 |
+
"loss": 0.0735,
|
314 |
+
"step": 4250
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 1.75,
|
318 |
+
"learning_rate": 2.2321428571428575e-05,
|
319 |
+
"loss": 0.0748,
|
320 |
+
"step": 4375
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 1.8,
|
324 |
+
"learning_rate": 2.1428571428571428e-05,
|
325 |
+
"loss": 0.0691,
|
326 |
+
"step": 4500
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 1.8,
|
330 |
+
"eval_accuracy": 0.97095,
|
331 |
+
"eval_f1": 0.9703949044585987,
|
332 |
+
"eval_loss": 0.09402387589216232,
|
333 |
+
"eval_precision": 0.9687658968358938,
|
334 |
+
"eval_recall": 0.972029399755002,
|
335 |
+
"eval_runtime": 52.5632,
|
336 |
+
"eval_samples_per_second": 380.494,
|
337 |
+
"eval_steps_per_second": 23.781,
|
338 |
+
"step": 4500
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 1.85,
|
342 |
+
"learning_rate": 2.0535714285714285e-05,
|
343 |
+
"loss": 0.0655,
|
344 |
+
"step": 4625
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 1.9,
|
348 |
+
"learning_rate": 1.9642857142857145e-05,
|
349 |
+
"loss": 0.0714,
|
350 |
+
"step": 4750
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 1.95,
|
354 |
+
"learning_rate": 1.8750000000000002e-05,
|
355 |
+
"loss": 0.0783,
|
356 |
+
"step": 4875
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 2.0,
|
360 |
+
"learning_rate": 1.785714285714286e-05,
|
361 |
+
"loss": 0.0733,
|
362 |
+
"step": 5000
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 2.0,
|
366 |
+
"eval_accuracy": 0.96855,
|
367 |
+
"eval_f1": 0.9683171309122047,
|
368 |
+
"eval_loss": 0.10380826145410538,
|
369 |
+
"eval_precision": 0.9557522123893806,
|
370 |
+
"eval_recall": 0.9812168231931401,
|
371 |
+
"eval_runtime": 52.269,
|
372 |
+
"eval_samples_per_second": 382.636,
|
373 |
+
"eval_steps_per_second": 23.915,
|
374 |
+
"step": 5000
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 2.05,
|
378 |
+
"learning_rate": 1.6964285714285715e-05,
|
379 |
+
"loss": 0.0461,
|
380 |
+
"step": 5125
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 2.1,
|
384 |
+
"learning_rate": 1.6071428571428572e-05,
|
385 |
+
"loss": 0.0451,
|
386 |
+
"step": 5250
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 2.15,
|
390 |
+
"learning_rate": 1.5178571428571429e-05,
|
391 |
+
"loss": 0.0502,
|
392 |
+
"step": 5375
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 2.2,
|
396 |
+
"learning_rate": 1.4285714285714285e-05,
|
397 |
+
"loss": 0.0476,
|
398 |
+
"step": 5500
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 2.2,
|
402 |
+
"eval_accuracy": 0.9714,
|
403 |
+
"eval_f1": 0.9709909727152854,
|
404 |
+
"eval_loss": 0.10657692700624466,
|
405 |
+
"eval_precision": 0.9648256399919372,
|
406 |
+
"eval_recall": 0.9772356063699469,
|
407 |
+
"eval_runtime": 51.6788,
|
408 |
+
"eval_samples_per_second": 387.006,
|
409 |
+
"eval_steps_per_second": 24.188,
|
410 |
+
"step": 5500
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 2.25,
|
414 |
+
"learning_rate": 1.3392857142857144e-05,
|
415 |
+
"loss": 0.0522,
|
416 |
+
"step": 5625
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 2.3,
|
420 |
+
"learning_rate": 1.25e-05,
|
421 |
+
"loss": 0.0476,
|
422 |
+
"step": 5750
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 2.35,
|
426 |
+
"learning_rate": 1.1607142857142857e-05,
|
427 |
+
"loss": 0.0404,
|
428 |
+
"step": 5875
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 2.4,
|
432 |
+
"learning_rate": 1.0714285714285714e-05,
|
433 |
+
"loss": 0.047,
|
434 |
+
"step": 6000
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 2.4,
|
438 |
+
"eval_accuracy": 0.96895,
|
439 |
+
"eval_f1": 0.9686316108501288,
|
440 |
+
"eval_loss": 0.10983184725046158,
|
441 |
+
"eval_precision": 0.9587041295870413,
|
442 |
+
"eval_recall": 0.9787668436096366,
|
443 |
+
"eval_runtime": 52.0939,
|
444 |
+
"eval_samples_per_second": 383.922,
|
445 |
+
"eval_steps_per_second": 23.995,
|
446 |
+
"step": 6000
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 2.45,
|
450 |
+
"learning_rate": 9.821428571428573e-06,
|
451 |
+
"loss": 0.0426,
|
452 |
+
"step": 6125
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 2.5,
|
456 |
+
"learning_rate": 8.92857142857143e-06,
|
457 |
+
"loss": 0.0396,
|
458 |
+
"step": 6250
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 2.55,
|
462 |
+
"learning_rate": 8.035714285714286e-06,
|
463 |
+
"loss": 0.0481,
|
464 |
+
"step": 6375
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 2.6,
|
468 |
+
"learning_rate": 7.142857142857143e-06,
|
469 |
+
"loss": 0.0431,
|
470 |
+
"step": 6500
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 2.6,
|
474 |
+
"eval_accuracy": 0.9711,
|
475 |
+
"eval_f1": 0.9706211243265224,
|
476 |
+
"eval_loss": 0.11103978008031845,
|
477 |
+
"eval_precision": 0.9665924276169265,
|
478 |
+
"eval_recall": 0.9746835443037974,
|
479 |
+
"eval_runtime": 54.7325,
|
480 |
+
"eval_samples_per_second": 365.413,
|
481 |
+
"eval_steps_per_second": 22.838,
|
482 |
+
"step": 6500
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 2.65,
|
486 |
+
"learning_rate": 6.25e-06,
|
487 |
+
"loss": 0.0396,
|
488 |
+
"step": 6625
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 2.7,
|
492 |
+
"learning_rate": 5.357142857142857e-06,
|
493 |
+
"loss": 0.0446,
|
494 |
+
"step": 6750
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 2.75,
|
498 |
+
"learning_rate": 4.464285714285715e-06,
|
499 |
+
"loss": 0.0362,
|
500 |
+
"step": 6875
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 2.8,
|
504 |
+
"learning_rate": 3.5714285714285714e-06,
|
505 |
+
"loss": 0.0464,
|
506 |
+
"step": 7000
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 2.8,
|
510 |
+
"eval_accuracy": 0.9697,
|
511 |
+
"eval_f1": 0.9693970306029694,
|
512 |
+
"eval_loss": 0.11486733704805374,
|
513 |
+
"eval_precision": 0.9592244653208075,
|
514 |
+
"eval_recall": 0.9797876684360963,
|
515 |
+
"eval_runtime": 52.2973,
|
516 |
+
"eval_samples_per_second": 382.429,
|
517 |
+
"eval_steps_per_second": 23.902,
|
518 |
+
"step": 7000
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 2.85,
|
522 |
+
"learning_rate": 2.6785714285714285e-06,
|
523 |
+
"loss": 0.0431,
|
524 |
+
"step": 7125
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 2.9,
|
528 |
+
"learning_rate": 1.7857142857142857e-06,
|
529 |
+
"loss": 0.0343,
|
530 |
+
"step": 7250
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 2.95,
|
534 |
+
"learning_rate": 8.928571428571428e-07,
|
535 |
+
"loss": 0.0467,
|
536 |
+
"step": 7375
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 3.0,
|
540 |
+
"learning_rate": 0.0,
|
541 |
+
"loss": 0.0342,
|
542 |
+
"step": 7500
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 3.0,
|
546 |
+
"eval_accuracy": 0.9703,
|
547 |
+
"eval_f1": 0.9699270959902794,
|
548 |
+
"eval_loss": 0.11218974739313126,
|
549 |
+
"eval_precision": 0.9621333869023704,
|
550 |
+
"eval_recall": 0.9778481012658228,
|
551 |
+
"eval_runtime": 52.6026,
|
552 |
+
"eval_samples_per_second": 380.209,
|
553 |
+
"eval_steps_per_second": 23.763,
|
554 |
+
"step": 7500
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 3.0,
|
558 |
+
"step": 7500,
|
559 |
+
"total_flos": 4.553211650587354e+16,
|
560 |
+
"train_loss": 0.08937127710183461,
|
561 |
+
"train_runtime": 4426.0374,
|
562 |
+
"train_samples_per_second": 108.449,
|
563 |
+
"train_steps_per_second": 1.695
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 3.0,
|
567 |
+
"eval_accuracy": 0.9714,
|
568 |
+
"eval_f1": 0.9709909727152854,
|
569 |
+
"eval_loss": 0.10657692700624466,
|
570 |
+
"eval_precision": 0.9648256399919372,
|
571 |
+
"eval_recall": 0.9772356063699469,
|
572 |
+
"eval_runtime": 52.9584,
|
573 |
+
"eval_samples_per_second": 377.655,
|
574 |
+
"eval_steps_per_second": 23.603,
|
575 |
+
"step": 7500
|
576 |
+
}
|
577 |
+
],
|
578 |
+
"max_steps": 7500,
|
579 |
+
"num_train_epochs": 3,
|
580 |
+
"total_flos": 4.553211650587354e+16,
|
581 |
+
"trial_name": null,
|
582 |
+
"trial_params": null
|
583 |
+
}
|
runs/Mar14_20-34-07_AROZYM/1678822455.5490243/events.out.tfevents.1678822455.AROZYM.16852.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e49c3016098df08fcf83bb49cea9a857c5593a89f2e9b9b3cd1784d323f6bb84
|
3 |
+
size 5710
|
runs/Mar14_20-34-07_AROZYM/events.out.tfevents.1678822455.AROZYM.16852.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0db08e1b90c90067776c1e15d37cc7a8d26a54bc05fb7fc5d9613ed2f30e41b6
|
3 |
+
size 21036
|
runs/Mar14_20-34-07_AROZYM/events.out.tfevents.1678826935.AROZYM.16852.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1594f661d83b602890f5bf87ce4c11486081cd819d02ce577ae50386c0e40b33
|
3 |
+
size 512
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3343c132ab69ea1d603a332bf27f2e9c2a72d227f7194ec4d73ebfc0b0f09d4
|
3 |
+
size 272534616
|
tokenizer.json
CHANGED
@@ -1,21 +1,7 @@
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
-
"truncation":
|
4 |
-
|
5 |
-
"max_length": 512,
|
6 |
-
"strategy": "LongestFirst",
|
7 |
-
"stride": 0
|
8 |
-
},
|
9 |
-
"padding": {
|
10 |
-
"strategy": {
|
11 |
-
"Fixed": 512
|
12 |
-
},
|
13 |
-
"direction": "Right",
|
14 |
-
"pad_to_multiple_of": null,
|
15 |
-
"pad_id": 1,
|
16 |
-
"pad_type_id": 0,
|
17 |
-
"pad_token": "<pad>"
|
18 |
-
},
|
19 |
"added_tokens": [
|
20 |
{
|
21 |
"id": 0,
|
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
+
"truncation": null,
|
4 |
+
"padding": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"added_tokens": [
|
6 |
{
|
7 |
"id": 0,
|
train_log.txt
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
Writing logs to ./outputs/2023-02-12-23-30-37-265125/train_log.txt.
|
2 |
-
Wrote original training args to ./outputs/2023-02-12-23-30-37-265125/training_args.json.
|
3 |
-
***** Running training *****
|
4 |
-
Num examples = 160000
|
5 |
-
Num epochs = 3
|
6 |
-
Num clean epochs = 3
|
7 |
-
Instantaneous batch size per device = 64
|
8 |
-
Total train batch size (w. parallel, distributed & accumulation) = 64
|
9 |
-
Gradient accumulation steps = 1
|
10 |
-
Total optimization steps = 7500
|
11 |
-
==========================================================
|
12 |
-
Epoch 1
|
13 |
-
Running clean epoch 1/3
|
14 |
-
Train accuracy: 94.11%
|
15 |
-
Eval accuracy: 96.77%
|
16 |
-
Best score found. Saved model to ./outputs/2023-02-12-23-30-37-265125/best_model/
|
17 |
-
==========================================================
|
18 |
-
Epoch 2
|
19 |
-
Running clean epoch 2/3
|
20 |
-
Train accuracy: 97.52%
|
21 |
-
Eval accuracy: 96.95%
|
22 |
-
Best score found. Saved model to ./outputs/2023-02-12-23-30-37-265125/best_model/
|
23 |
-
==========================================================
|
24 |
-
Epoch 3
|
25 |
-
Running clean epoch 3/3
|
26 |
-
Train accuracy: 98.70%
|
27 |
-
Eval accuracy: 97.07%
|
28 |
-
Best score found. Saved model to ./outputs/2023-02-12-23-30-37-265125/best_model/
|
29 |
-
Wrote README to ./outputs/2023-02-12-23-30-37-265125/README.md.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d3e252df7bb1c760edf828ca28397c7d4e9cca53a7f15ee0bea8c2efbfb54af
|
3 |
+
size 3515
|
training_args.json
DELETED
@@ -1,38 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"model_name_or_path": "cmarkea/distilcamembert-base",
|
3 |
-
"attack": null,
|
4 |
-
"dataset": "allocine",
|
5 |
-
"task_type": "classification",
|
6 |
-
"model_max_length": null,
|
7 |
-
"model_num_labels": null,
|
8 |
-
"dataset_train_split": "train",
|
9 |
-
"dataset_eval_split": "validation",
|
10 |
-
"filter_train_by_labels": null,
|
11 |
-
"filter_eval_by_labels": null,
|
12 |
-
"num_epochs": 3,
|
13 |
-
"num_clean_epochs": 1,
|
14 |
-
"attack_epoch_interval": 1,
|
15 |
-
"early_stopping_epochs": null,
|
16 |
-
"learning_rate": 5e-05,
|
17 |
-
"num_warmup_steps": 500,
|
18 |
-
"weight_decay": 0.01,
|
19 |
-
"per_device_train_batch_size": 64,
|
20 |
-
"per_device_eval_batch_size": 32,
|
21 |
-
"gradient_accumulation_steps": 1,
|
22 |
-
"random_seed": 786,
|
23 |
-
"parallel": false,
|
24 |
-
"load_best_model_at_end": false,
|
25 |
-
"alpha": 1.0,
|
26 |
-
"num_train_adv_examples": -1,
|
27 |
-
"query_budget_train": null,
|
28 |
-
"attack_num_workers_per_device": 1,
|
29 |
-
"output_dir": "./outputs/2023-02-12-23-30-37-265125",
|
30 |
-
"checkpoint_interval_steps": null,
|
31 |
-
"checkpoint_interval_epochs": null,
|
32 |
-
"save_last": true,
|
33 |
-
"log_to_tb": false,
|
34 |
-
"tb_log_dir": null,
|
35 |
-
"log_to_wandb": false,
|
36 |
-
"wandb_project": "textattack",
|
37 |
-
"logging_interval_step": 1
|
38 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|