baptiste-pasquier commited on
Commit
c40e290
·
verified ·
1 Parent(s): ef176de

update model

Browse files
Files changed (4) hide show
  1. README.md +3 -3
  2. pytorch_model.bin +1 -1
  3. train_log.txt +24 -12
  4. training_args.json +4 -4
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ## TextAttack Model Card
2
 
3
  This `cmarkea/distilcamembert-base` model was fine-tuned using TextAttackand the `allocine` dataset loaded using the `datasets` library. The model was fine-tuned
4
- for 1 epochs with a batch size of 16,
5
  a maximum sequence length of 512, and an initial learning rate of 5e-05.
6
  Since this was a classification task, the model was trained with a cross-entropy loss function.
7
- The best score the model achieved on this task was 0.9692, as measured by the
8
- eval set accuracy, found after 1 epoch.
9
 
10
  For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
 
1
  ## TextAttack Model Card
2
 
3
  This `cmarkea/distilcamembert-base` model was fine-tuned using TextAttackand the `allocine` dataset loaded using the `datasets` library. The model was fine-tuned
4
+ for 3 epochs with a batch size of 64,
5
  a maximum sequence length of 512, and an initial learning rate of 5e-05.
6
  Since this was a classification task, the model was trained with a cross-entropy loss function.
7
+ The best score the model achieved on this task was 0.9707, as measured by the
8
+ eval set accuracy, found after 3 epochs.
9
 
10
  For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:556004d4af12dfeee38a8f4aadc5ab961bcf74b235a00cc1f7fe08cf09d2fd15
3
  size 272425205
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cf75746015301662f1a8677d6e45d6c0efba735b927358db3cf1c57975d0875
3
  size 272425205
train_log.txt CHANGED
@@ -1,17 +1,29 @@
1
- Writing logs to ./outputs/2023-02-13-00-40-42-038240/train_log.txt.
2
- Wrote original training args to ./outputs/2023-02-13-00-40-42-038240/training_args.json.
3
  ***** Running training *****
4
  Num examples = 160000
5
- Num epochs = 1
6
- Num clean epochs = 1
7
- Instantaneous batch size per device = 16
8
- Total train batch size (w. parallel, distributed & accumulation) = 16
9
  Gradient accumulation steps = 1
10
- Total optimization steps = 10000
11
  ==========================================================
12
  Epoch 1
13
- Running clean epoch 1/1
14
- Train accuracy: 95.02%
15
- Eval accuracy: 96.92%
16
- Best score found. Saved model to ./outputs/2023-02-13-00-40-42-038240/best_model/
17
- Wrote README to ./outputs/2023-02-13-00-40-42-038240/README.md.
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Writing logs to ./outputs/2023-02-12-23-30-37-265125/train_log.txt.
2
+ Wrote original training args to ./outputs/2023-02-12-23-30-37-265125/training_args.json.
3
  ***** Running training *****
4
  Num examples = 160000
5
+ Num epochs = 3
6
+ Num clean epochs = 3
7
+ Instantaneous batch size per device = 64
8
+ Total train batch size (w. parallel, distributed & accumulation) = 64
9
  Gradient accumulation steps = 1
10
+ Total optimization steps = 7500
11
  ==========================================================
12
  Epoch 1
13
+ Running clean epoch 1/3
14
+ Train accuracy: 94.11%
15
+ Eval accuracy: 96.77%
16
+ Best score found. Saved model to ./outputs/2023-02-12-23-30-37-265125/best_model/
17
+ ==========================================================
18
+ Epoch 2
19
+ Running clean epoch 2/3
20
+ Train accuracy: 97.52%
21
+ Eval accuracy: 96.95%
22
+ Best score found. Saved model to ./outputs/2023-02-12-23-30-37-265125/best_model/
23
+ ==========================================================
24
+ Epoch 3
25
+ Running clean epoch 3/3
26
+ Train accuracy: 98.70%
27
+ Eval accuracy: 97.07%
28
+ Best score found. Saved model to ./outputs/2023-02-12-23-30-37-265125/best_model/
29
+ Wrote README to ./outputs/2023-02-12-23-30-37-265125/README.md.
training_args.json CHANGED
@@ -9,14 +9,14 @@
9
  "dataset_eval_split": "validation",
10
  "filter_train_by_labels": null,
11
  "filter_eval_by_labels": null,
12
- "num_epochs": 1,
13
  "num_clean_epochs": 1,
14
  "attack_epoch_interval": 1,
15
  "early_stopping_epochs": null,
16
  "learning_rate": 5e-05,
17
  "num_warmup_steps": 500,
18
  "weight_decay": 0.01,
19
- "per_device_train_batch_size": 16,
20
  "per_device_eval_batch_size": 32,
21
  "gradient_accumulation_steps": 1,
22
  "random_seed": 786,
@@ -26,11 +26,11 @@
26
  "num_train_adv_examples": -1,
27
  "query_budget_train": null,
28
  "attack_num_workers_per_device": 1,
29
- "output_dir": "./outputs/2023-02-13-00-40-42-038240",
30
  "checkpoint_interval_steps": null,
31
  "checkpoint_interval_epochs": null,
32
  "save_last": true,
33
- "log_to_tb": true,
34
  "tb_log_dir": null,
35
  "log_to_wandb": false,
36
  "wandb_project": "textattack",
 
9
  "dataset_eval_split": "validation",
10
  "filter_train_by_labels": null,
11
  "filter_eval_by_labels": null,
12
+ "num_epochs": 3,
13
  "num_clean_epochs": 1,
14
  "attack_epoch_interval": 1,
15
  "early_stopping_epochs": null,
16
  "learning_rate": 5e-05,
17
  "num_warmup_steps": 500,
18
  "weight_decay": 0.01,
19
+ "per_device_train_batch_size": 64,
20
  "per_device_eval_batch_size": 32,
21
  "gradient_accumulation_steps": 1,
22
  "random_seed": 786,
 
26
  "num_train_adv_examples": -1,
27
  "query_budget_train": null,
28
  "attack_num_workers_per_device": 1,
29
+ "output_dir": "./outputs/2023-02-12-23-30-37-265125",
30
  "checkpoint_interval_steps": null,
31
  "checkpoint_interval_epochs": null,
32
  "save_last": true,
33
+ "log_to_tb": false,
34
  "tb_log_dir": null,
35
  "log_to_wandb": false,
36
  "wandb_project": "textattack",