|
import torch |
|
from typing import Dict, List, Any |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
from transformers.generation.utils import GenerationConfig |
|
|
|
|
|
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
self.model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=dtype, trust_remote_code=True) |
|
self.model.generation_config = GenerationConfig.from_pretrained(path) |
|
self.tokenizer = AutoTokenizer.from_pretrained(path, use_fast=False, trust_remote_code=True) |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
inputs = data.pop("inputs", data) |
|
|
|
messages = [{"role": "user", "content": inputs}] |
|
response = self.model.chat(self.tokenizer, messages) |
|
if torch.backends.mps.is_available(): |
|
torch.mps.empty_cache() |
|
return [{'generated_text': response}] |