Update README.md
Browse files
README.md
CHANGED
@@ -5,28 +5,19 @@ language:
|
|
5 |
pipeline_tag: text-generation
|
6 |
inference: false
|
7 |
---
|
8 |
-
#
|
9 |
|
10 |
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
|
12 |
-
|
|
|
13 |
|
14 |
-
|
15 |
-
.
|
|
|
|
|
16 |
|
17 |
-
baichuan-7B is an open-source large-scale pre-trained model developed by Baichuan Intelligent Technology. Based on the Transformer architecture, it is a model with 7 billion parameters trained on approximately 1.2 trillion tokens. It supports both Chinese and English, with a context window length of 4096. It achieves the best performance of its size on standard Chinese and English authoritative benchmarks (C-EVAL/MMLU).
|
18 |
|
19 |
-
If you wish to use baichuan-7B (for inference, finetuning, etc.), we recommend using the accompanying code library [baichuan-7B](https://github.com/baichuan-inc/baichuan-7B).
|
20 |
-
|
21 |
-
## Why use baichuan-7B
|
22 |
-
|
23 |
-
- 在同尺寸模型中baichuan-7B达到了目前SOTA的水平,参考下面MMLU指标
|
24 |
-
- baichuan-7B使用自有的中英文双语语料进行训练,在中文上进行优化,在C-Eval达到SOTA水平
|
25 |
-
- 不同于LLaMA完全禁止商业使用,baichuan-7B使用更宽松的开源协议,允许用于商业目的
|
26 |
-
|
27 |
-
- Among models of the same size, baichuan-7B has achieved the current state-of-the-art (SOTA) level, as evidenced by the following MMLU metrics.
|
28 |
-
- baichuan-7B is trained on proprietary bilingual Chinese-English corpora, optimized for Chinese, and achieves SOTA performance on C-Eval.
|
29 |
-
- Unlike LLaMA, which completely prohibits commercial use, baichuan-7B employs a more lenient open-source license, allowing for commercial purposes.
|
30 |
|
31 |
## How to Get Started with the Model
|
32 |
|
@@ -63,7 +54,7 @@ print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
|
63 |
- **Developed by:** 百川智能(Baichuan Intelligent Technology)
|
64 |
- **Email**: opensource@baichuan-inc.com
|
65 |
- **Language(s) (NLP):** Chinese/English
|
66 |
-
- **License:** [
|
67 |
|
68 |
### Model Sources
|
69 |
|
@@ -107,7 +98,7 @@ The specific parameters are as follows:
|
|
107 |
### Downstream Use
|
108 |
|
109 |
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
110 |
-
我们同时开源出了和本模型配套的训练代码,允许进行高效的Finetune用于下游任务,具体参见[
|
111 |
|
112 |
We have also open-sourced the training code that accompanies this model, allowing for efficient finetuning for downstream tasks. For more details, please refer to [baichuan-7B](https://github.com/baichuan-inc/baichuan-7B).
|
113 |
|
@@ -122,108 +113,65 @@ Production use without adequate assessment of risks and mitigation; any use case
|
|
122 |
|
123 |
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
124 |
|
125 |
-
|
126 |
|
127 |
-
|
128 |
|
129 |
## Training Details
|
130 |
|
131 |
-
训练具体设置参见[
|
132 |
|
133 |
-
For specific training settings, please refer to [
|
134 |
|
135 |
## Evaluation
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
[
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
146 |
-
|
|
147 |
-
|
|
148 |
-
|
|
149 |
-
|
|
150 |
-
|
|
151 |
-
|
|
152 |
-
|
|
153 |
-
|
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
174 |
-
|
175 |
-
|
|
176 |
-
|
|
177 |
-
|
|
178 |
-
|
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
| Model | Average |
|
186 |
-
|-------------------------|-----------------|
|
187 |
-
| Open-LLaMA-v2-pretrain | 23.49 |
|
188 |
-
| Ziya-LLaMA-13B-pretrain | 27.64 |
|
189 |
-
| Falcon-7B | 27.18 |
|
190 |
-
| TigerBot-7B-base | 25.19 |
|
191 |
-
| LLaMA-7B | 28.17 |
|
192 |
-
| ChatGLM-6B | 23.49 |
|
193 |
-
| BLOOM-7B | 26.55 |
|
194 |
-
| BLOOMZ-7B | 30.27 |
|
195 |
-
| Aquila-7B<sup>*</sup> | 25.58 |
|
196 |
-
| **baichuan-7B** | **34.44** |
|
197 |
-
|
198 |
-
<sup>*</sup>其中Aquila模型来源于[智源官方网站](https://model.baai.ac.cn/model-detail/100098),仅做参考
|
199 |
-
|
200 |
-
### English Leaderboard
|
201 |
-
In addition to Chinese, we also tested the model's performance in English.
|
202 |
-
|
203 |
-
#### MMLU
|
204 |
-
|
205 |
-
[MMLU](https://arxiv.org/abs/2009.03300) is an English evaluation dataset that includes 57 multiple-choice tasks, covering elementary mathematics, American history, computer science, law, etc. The difficulty ranges from high school level to expert level, making it a mainstream LLM evaluation dataset.
|
206 |
-
|
207 |
-
We adopted the [open-source]((https://github.com/hendrycks/test)) evaluation scheme, and the final 5-shot results are as follows:
|
208 |
-
|
209 |
-
| Model | Humanities | Social Sciences | STEM | Other | Average |
|
210 |
-
|----------------------------------------|-----------:|:---------------:|:----:|:-----:|:-------:|
|
211 |
-
| LLaMA-7B<sup>2</sup> | 34.0 | 38.3 | 30.5 | 38.1 | 35.1 |
|
212 |
-
| Falcon-7B<sup>1</sup> | - | - | - | - | 35.0 |
|
213 |
-
| mpt-7B<sup>1</sup> | - | - | - | - | 35.6 |
|
214 |
-
| ChatGLM-6B<sup>0</sup> | 35.4 | 41.0 | 31.3 | 40.5 | 36.9 |
|
215 |
-
| BLOOM 7B<sup>0</sup> | 25.0 | 24.4 | 26.5 | 26.4 | 25.5 |
|
216 |
-
| BLOOMZ 7B<sup>0</sup> | 31.3 | 42.1 | 34.4 | 39.0 | 36.1 |
|
217 |
-
| moss-moon-003-base (16B)<sup>0</sup> | 24.2 | 22.8 | 22.4 | 24.4 | 23.6 |
|
218 |
-
| moss-moon-003-sft (16B)<sup>0</sup> | 30.5 | 33.8 | 29.3 | 34.4 | 31.9 |
|
219 |
-
| **baichuan-7B<sup>0</sup>** | 38.4 | 48.9 | 35.6 | 48.1 | 42.3 |
|
220 |
-
|
221 |
-
The superscript in the Model column indicates the source of the results.
|
222 |
-
```
|
223 |
-
0:reimplemented
|
224 |
-
1:https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
|
225 |
-
2:https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
|
226 |
-
```
|
227 |
|
228 |
## Our Group
|
229 |
[WeChat](https://github.com/baichuan-inc/baichuan-7B/blob/main/media/wechat.jpeg?raw=true)
|
|
|
5 |
pipeline_tag: text-generation
|
6 |
inference: false
|
7 |
---
|
8 |
+
# Baichuan-13B
|
9 |
|
10 |
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
|
12 |
+
## 介绍
|
13 |
+
Baichuan-13B 是由百川智能继 [Baichuan-7B](https://github.com/baichuan-inc/baichuan-7B) 之后开发的包含 130 亿参数的开源可商用的大规模语言模型,在标准的中文和英文 benchmark上均取得同尺寸最好的效果。本次发布包含有预训练 (Baichuan-13B-Base) 和对齐 (Baichuan-13B-Chat) 两个版本。Baichuan-13B 有如下几个特点:
|
14 |
|
15 |
+
1. **开源可商用百亿级别中文语言模型**:Baichuan-13B-Base 是免费开源可商用的百亿级别中文预训练语言模型。包含有130亿参数,没有经过任何 Instruction Tuning 或者针对 benchmark 的优化,纯净、高可定制。弥补了在中文领域缺乏 100 亿以上高可用中文预训练大模型的短板。
|
16 |
+
2. **更大尺寸、更多数据**:在 Baichuan-7B 的基础上进一步扩大参数量到 130 亿,并且在高质量的语料上训练了 1.4 万亿 tokens,是当前开源 13B 尺寸下训练数据量最多的模型。支持中英双语,使用 [ALiBi](https://arxiv.org/abs/2108.12409) 位置编码,上下文窗口长度为 4096。
|
17 |
+
3. **同时开源预训练和对齐模型**:预训练模型是适用开发者的”基座“,而广大普通用户对有对话功能的对齐模型具有更强的需求。因此本次开源我们同时发布了对齐模型(Baichuan-13B-Chat),具有很强的对话能力,开箱即用,支持很简单的部署。
|
18 |
+
4. **更高效的推理**:为了支持更广大用户的使用,我们本次同时开源了 int8 和 int4 的量化版本,在几乎没有效果损失的情况下可以很方便的将模型部署在低显存机器上。
|
19 |
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
## How to Get Started with the Model
|
23 |
|
|
|
54 |
- **Developed by:** 百川智能(Baichuan Intelligent Technology)
|
55 |
- **Email**: opensource@baichuan-inc.com
|
56 |
- **Language(s) (NLP):** Chinese/English
|
57 |
+
- **License:** [Baichuan-13B License]()
|
58 |
|
59 |
### Model Sources
|
60 |
|
|
|
98 |
### Downstream Use
|
99 |
|
100 |
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
101 |
+
我们同时开源出了和本模型配套的训练代码,允许进行高效的Finetune用于下游任务,具体参见[Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B)。
|
102 |
|
103 |
We have also open-sourced the training code that accompanies this model, allowing for efficient finetuning for downstream tasks. For more details, please refer to [baichuan-7B](https://github.com/baichuan-inc/baichuan-7B).
|
104 |
|
|
|
113 |
|
114 |
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
115 |
|
116 |
+
Baichuan-7B可能会产生事实上不正确的输出,不应依赖它产生事实上准确的信息。Baichuan-7B是在各种公共数据集上进行训练的。尽管我们已经做出了巨大的努力来清洗预训练数据,但这个模型可能会生成淫秽、偏见或其他冒犯性的输出。
|
117 |
|
118 |
+
Baichuan-7B can produce factually incorrect output, and should not be relied on to produce factually accurate information. Baichuan-7B was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
|
119 |
|
120 |
## Training Details
|
121 |
|
122 |
+
训练具体设置参见[Baichuan-7B](https://github.com/baichuan-inc/Baichuan-7B)。
|
123 |
|
124 |
+
For specific training settings, please refer to [Baichuan-7B](https://github.com/baichuan-inc/Baichuan-7B).
|
125 |
|
126 |
## Evaluation
|
127 |
|
128 |
+
# Benchmark结果
|
129 |
+
|
130 |
+
我们在各个 benchmark 下进行了`5-shot`评测,所采用的方法和 [Baichuan-7B](https://github.com/baichuan-inc/Baichuan-7B/) 项目中相同。结果如下:
|
131 |
+
|
132 |
+
## C-Eval
|
133 |
+
|
134 |
+
| Model 5-shot | STEM | Social Sciences | Humanities | Others | Average |
|
135 |
+
|-------------------------|-------|-----------------|------------|--------|---------|
|
136 |
+
| ChatGLM2-6B | 45.9 | 61.6 | 49.7 | 48.2 | 50.2 |
|
137 |
+
| InternLM-7B<sup>*</sup> | 40.1 | 55.7 | 49.4 | 37.9 | 44.6 |
|
138 |
+
| Baichuan-7B | 38.2 | 52.0 | 46.2 | 39.3 | 42.8 |
|
139 |
+
| Ziya-LLaMA-13B-Pretrain | 27.6 | 34.4 | 32.0 | 28.6 | 30.0 |
|
140 |
+
| LLaMA-13B | 27.0 | 33.6 | 27.7 | 27.6 | 28.5 |
|
141 |
+
| moss-moon-003-base (16B)| 27.0 | 29.1 | 27.2 | 26.9 | 27.4 |
|
142 |
+
| vicuna-13B | 22.8 | 24.8 | 22.3 | 18.5 | 22.2 |
|
143 |
+
| **Baichuan-13B-Base** | **45.9** | **63.5** | **57.2** | **49.3** | **52.4** |
|
144 |
+
| **Baichuan-13B-Chat** | **43.7** | **64.6** | **56.2** | **49.2** | **51.5** |
|
145 |
+
> *说明:表中各个模型的结果是使用统一的评估代码得到。[InternLM-7B](https://huggingface.co/internlm/internlm-7b) 汇报使用 [OpenCompass](https://opencompass.org.cn/rank) 工具评估的C-Eval平均值为 53.4,我们使用 OpenCompass 评估 InternLM-7B 的平均值为 51.6
|
146 |
+
|
147 |
+
## MMLU
|
148 |
+
|
149 |
+
| Model 5-shot | STEM | Social Sciences | Humanities | Others | Average |
|
150 |
+
|-------------------------|-------|-----------------|------------|--------|---------|
|
151 |
+
| LLaMA-13B | 36.1 | 53.0 | 44.0 | 52.8 | 46.3 |
|
152 |
+
| ChatGLM2-6B | 38.2 | 52.5 | 43.2 | 50.8 | 45.9 |
|
153 |
+
| InternLM-7B | 38.0 | 51.1 | 39.2 | 50.2 | 44.1 |
|
154 |
+
| Ziya-LLaMA-13B-Pretrain | 35.6 | 47.6 | 40.1 | 49.4 | 42.9 |
|
155 |
+
| Baichuan-7B | 35.6 | 48.9 | 38.4 | 48.1 | 42.3 |
|
156 |
+
| vicuna-13B | 24.2 | 24.1 | 24.6 | 26.8 | 24.9 |
|
157 |
+
| moss-moon-003-base (16B)| 22.4 | 22.8 | 24.2 | 24.4 | 23.6 |
|
158 |
+
| **Baichuan-13B-Base** | **41.6** | **60.9** | **47.4** | **58.5** | **51.6** |
|
159 |
+
| **Baichuan-13B-Chat** | **40.9** | **60.9** | **48.8** | **59.0** | **52.1** |
|
160 |
+
|
161 |
+
|
162 |
+
## CMMLU
|
163 |
+
|
164 |
+
| Model 5-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
|
165 |
+
|-------------------------|-------|------------|-----------------|--------|----------------|---------|
|
166 |
+
| InternLM-7B | 41.7 | 54.4 | 56.4 | 55.4 | 53.1 | 52.1 |
|
167 |
+
| ChatGLM2-6B | 42.5 | 51.4 | 51.4 | 50.7 | 48.4 | 49.0 |
|
168 |
+
| Baichuan-7B | 34.4 | 47.5 | 47.6 | 46.6 | 44.3 | 44.0 |
|
169 |
+
| Ziya-LLaMA-13B-Pretrain | 29.0 | 30.7 | 33.8 | 34.4 | 31.9 | 32.1 |
|
170 |
+
| LLaMA-13B | 29.2 | 30.8 | 31.6 | 33.0 | 30.5 | 31.2 |
|
171 |
+
| moss-moon-003-base (16B)| 27.2 | 30.4 | 28.8 | 32.6 | 28.7 | 29.6 |
|
172 |
+
| vicuna-13B | 24.0 | 25.4 | 25.3 | 25.0 | 25.0 | 24.9 |
|
173 |
+
| **Baichuan-13B-Base** | **41.7** | **61.1** | **59.8** | **59.0** | **56.4** | **55.3** |
|
174 |
+
| **Baichuan-13B-Chat** | **42.8** | **62.6** | **59.7** | **59.0** | **56.1** | **55.8** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
## Our Group
|
177 |
[WeChat](https://github.com/baichuan-inc/baichuan-7B/blob/main/media/wechat.jpeg?raw=true)
|