xlsr-he-adap-de / README.md
Badr Abdullah
Model save
c0fb0f0 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: xlsr-he-adap-de
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: he
          split: validation
          args: he
        metrics:
          - name: Wer
            type: wer
            value: 0.5332994407727504

Visualize in Weights & Biases

xlsr-he-adap-de

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1481
  • Wer: 0.5333
  • Cer: 0.1968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.697 0.8368 100 3.7808 1.0 1.0
3.1842 1.6736 200 3.5119 1.0 1.0
3.3472 2.5105 300 3.4405 1.0 1.0
1.6876 3.3473 400 2.0791 0.9664 0.5128
1.1828 4.1841 500 1.5367 0.8851 0.3903
0.9151 5.0209 600 1.2217 0.8210 0.3806
0.7117 5.8577 700 1.0726 0.7824 0.3500
0.809 6.6946 800 1.1018 0.8094 0.3451
0.9377 7.5314 900 0.9955 0.7438 0.3255
0.5836 8.3682 1000 0.9658 0.7605 0.3209
0.5226 9.2050 1100 0.9701 0.7316 0.3125
0.4732 10.0418 1200 0.9576 0.7636 0.2993
0.5439 10.8787 1300 0.9689 0.7743 0.2976
0.3479 11.7155 1400 1.0207 0.7026 0.2813
0.4111 12.5523 1500 1.0051 0.6873 0.2725
0.2865 13.3891 1600 0.9566 0.7087 0.2716
0.3942 14.2259 1700 1.0009 0.6929 0.2730
0.3058 15.0628 1800 0.9195 0.6695 0.2583
0.2141 15.8996 1900 0.9707 0.6523 0.2532
0.4893 16.7364 2000 1.0019 0.6772 0.2548
0.2922 17.5732 2100 1.0317 0.6721 0.2645
0.3056 18.4100 2200 1.0440 0.6385 0.2595
0.3616 19.2469 2300 1.1057 0.6406 0.2516
0.271 20.0837 2400 1.1302 0.6411 0.2532
0.2183 20.9205 2500 1.2060 0.6050 0.2513
0.3128 21.7573 2600 1.1261 0.6436 0.2522
0.1602 22.5941 2700 1.1014 0.6141 0.2394
0.2255 23.4310 2800 1.2601 0.6009 0.2480
0.3142 24.2678 2900 1.0729 0.6151 0.2410
0.1815 25.1046 3000 1.0396 0.6111 0.2314
0.2507 25.9414 3100 1.1343 0.5760 0.2236
0.151 26.7782 3200 1.1477 0.6263 0.2382
0.1531 27.6151 3300 1.0935 0.5984 0.2281
0.1943 28.4519 3400 1.0250 0.5689 0.2150
0.2592 29.2887 3500 1.0309 0.5780 0.2115
0.2394 30.1255 3600 1.0363 0.5735 0.2176
0.2146 30.9623 3700 1.0521 0.5582 0.2098
0.1629 31.7992 3800 1.0586 0.5816 0.2116
0.099 32.6360 3900 1.0348 0.5643 0.2100
0.1748 33.4728 4000 1.0983 0.5841 0.2147
0.1143 34.3096 4100 1.0979 0.5567 0.2059
0.1364 35.1464 4200 1.1404 0.5663 0.2094
0.1552 35.9833 4300 1.0805 0.5628 0.2085
0.1121 36.8201 4400 1.1262 0.5628 0.2061
0.1051 37.6569 4500 1.1390 0.5425 0.2059
0.1384 38.4937 4600 1.1252 0.5394 0.2016
0.1268 39.3305 4700 1.1607 0.5552 0.2068
0.1233 40.1674 4800 1.1776 0.5618 0.2072
0.2489 41.0042 4900 1.1335 0.5399 0.1977
0.1468 41.8410 5000 1.1419 0.5404 0.1964
0.1148 42.6778 5100 1.1404 0.5455 0.2008
0.1415 43.5146 5200 1.1149 0.5425 0.2005
0.1358 44.3515 5300 1.1354 0.5430 0.2013
0.1231 45.1883 5400 1.1457 0.5374 0.1999
0.0898 46.0251 5500 1.1218 0.5343 0.1989
0.1271 46.8619 5600 1.1404 0.5353 0.1977
0.1467 47.6987 5700 1.1765 0.5318 0.1961
0.1757 48.5356 5800 1.1517 0.5292 0.1973
0.1471 49.3724 5900 1.1481 0.5333 0.1968

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1