metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: xlsr-arabic
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: ar
split: validation
args: ar
metrics:
- name: Wer
type: wer
value: 0.5205260783565256
xlsr-arabic
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.8019
- Wer: 0.5205
- Cer: 0.2091
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
9.6085 | 0.1127 | 100 | 8.2716 | 1.0 | 1.0 |
3.7055 | 0.2255 | 200 | 3.5635 | 1.0 | 1.0 |
3.6707 | 0.3382 | 300 | 3.4485 | 1.0 | 1.0 |
3.4696 | 0.4510 | 400 | 3.3925 | 1.0 | 0.9896 |
3.5699 | 0.5637 | 500 | 3.3520 | 0.9989 | 0.9810 |
2.5766 | 0.6764 | 600 | 2.5549 | 0.9997 | 0.8222 |
1.5035 | 0.7892 | 700 | 1.3485 | 0.9135 | 0.4360 |
1.508 | 0.9019 | 800 | 1.0530 | 0.8492 | 0.3821 |
1.094 | 1.0147 | 900 | 0.8783 | 0.7682 | 0.3325 |
0.9471 | 1.1274 | 1000 | 0.8124 | 0.7197 | 0.3019 |
0.8182 | 1.2401 | 1100 | 0.8092 | 0.7173 | 0.2788 |
0.8558 | 1.3529 | 1200 | 0.7785 | 0.7034 | 0.2655 |
0.7199 | 1.4656 | 1300 | 0.6794 | 0.6689 | 0.2554 |
0.7401 | 1.5784 | 1400 | 0.6849 | 0.6593 | 0.2509 |
0.8892 | 1.6911 | 1500 | 0.6862 | 0.6533 | 0.2456 |
0.6824 | 1.8038 | 1600 | 0.6654 | 0.6426 | 0.2455 |
0.5671 | 1.9166 | 1700 | 0.6851 | 0.6582 | 0.2378 |
0.5298 | 2.0293 | 1800 | 0.7284 | 0.6530 | 0.2476 |
0.5056 | 2.1421 | 1900 | 0.6453 | 0.6348 | 0.2311 |
0.4889 | 2.2548 | 2000 | 0.6641 | 0.6365 | 0.2342 |
0.6665 | 2.3675 | 2100 | 0.6607 | 0.6240 | 0.2305 |
0.4022 | 2.4803 | 2200 | 0.6029 | 0.6054 | 0.2255 |
0.5083 | 2.5930 | 2300 | 0.5710 | 0.5894 | 0.2159 |
0.5413 | 2.7057 | 2400 | 0.5762 | 0.5981 | 0.2219 |
0.5765 | 2.8185 | 2500 | 0.5684 | 0.5965 | 0.2232 |
0.6379 | 2.9312 | 2600 | 0.5478 | 0.5692 | 0.2121 |
0.388 | 3.0440 | 2700 | 0.5589 | 0.5971 | 0.2220 |
0.5047 | 3.1567 | 2800 | 0.5903 | 0.5882 | 0.2155 |
0.4911 | 3.2694 | 2900 | 0.5813 | 0.5838 | 0.2240 |
0.4059 | 3.3822 | 3000 | 0.5796 | 0.5884 | 0.2208 |
0.4182 | 3.4949 | 3100 | 0.6368 | 0.5939 | 0.2243 |
0.425 | 3.6077 | 3200 | 0.5325 | 0.5437 | 0.2093 |
0.5876 | 3.7204 | 3300 | 0.5463 | 0.5629 | 0.2091 |
0.3795 | 3.8331 | 3400 | 0.5265 | 0.5554 | 0.2090 |
0.5567 | 3.9459 | 3500 | 0.5372 | 0.5577 | 0.2108 |
0.4698 | 4.0586 | 3600 | 0.5723 | 0.5900 | 0.2197 |
0.3856 | 4.1714 | 3700 | 0.5992 | 0.5753 | 0.2168 |
0.427 | 4.2841 | 3800 | 0.5735 | 0.5790 | 0.2156 |
0.3449 | 4.3968 | 3900 | 0.5642 | 0.5750 | 0.2113 |
0.4049 | 4.5096 | 4000 | 0.5972 | 0.5825 | 0.2203 |
0.4687 | 4.6223 | 4100 | 0.5649 | 0.5612 | 0.2111 |
0.4301 | 4.7351 | 4200 | 0.5515 | 0.5622 | 0.2105 |
0.4429 | 4.8478 | 4300 | 0.5622 | 0.5709 | 0.2125 |
0.4234 | 4.9605 | 4400 | 0.5684 | 0.5496 | 0.2098 |
0.3361 | 5.0733 | 4500 | 0.6108 | 0.5541 | 0.2137 |
0.3547 | 5.1860 | 4600 | 0.5869 | 0.5508 | 0.2091 |
0.2801 | 5.2988 | 4700 | 0.6526 | 0.5586 | 0.2163 |
0.3237 | 5.4115 | 4800 | 0.6481 | 0.5576 | 0.2169 |
0.3366 | 5.5242 | 4900 | 0.5603 | 0.5345 | 0.2076 |
0.2724 | 5.6370 | 5000 | 0.6141 | 0.5491 | 0.2151 |
0.2845 | 5.7497 | 5100 | 0.7205 | 0.5605 | 0.2266 |
0.293 | 5.8625 | 5200 | 0.6246 | 0.5502 | 0.2142 |
0.2904 | 5.9752 | 5300 | 0.5936 | 0.5386 | 0.2097 |
0.3082 | 6.0879 | 5400 | 0.6173 | 0.5134 | 0.2032 |
0.35 | 6.2007 | 5500 | 0.6430 | 0.5158 | 0.2051 |
0.2101 | 6.3134 | 5600 | 0.5861 | 0.5110 | 0.1998 |
0.2822 | 6.4262 | 5700 | 0.6322 | 0.5269 | 0.2092 |
0.263 | 6.5389 | 5800 | 0.7677 | 0.5477 | 0.2231 |
0.2329 | 6.6516 | 5900 | 0.6837 | 0.5336 | 0.2129 |
0.2626 | 6.7644 | 6000 | 0.6350 | 0.5208 | 0.2075 |
0.2467 | 6.8771 | 6100 | 0.6082 | 0.5274 | 0.2060 |
0.3242 | 6.9899 | 6200 | 0.6619 | 0.5347 | 0.2098 |
0.3301 | 7.1026 | 6300 | 0.6798 | 0.5255 | 0.2107 |
0.3085 | 7.2153 | 6400 | 0.6934 | 0.5202 | 0.2076 |
0.3395 | 7.3281 | 6500 | 0.6981 | 0.5329 | 0.2125 |
0.2766 | 7.4408 | 6600 | 0.6886 | 0.5256 | 0.2091 |
0.2479 | 7.5536 | 6700 | 0.7543 | 0.5414 | 0.2148 |
0.18 | 7.6663 | 6800 | 0.7538 | 0.5198 | 0.2127 |
0.3539 | 7.7790 | 6900 | 0.6877 | 0.5290 | 0.2136 |
0.2759 | 7.8918 | 7000 | 0.6516 | 0.5110 | 0.2053 |
0.1152 | 8.0045 | 7100 | 0.7376 | 0.5293 | 0.2143 |
0.1814 | 8.1172 | 7200 | 0.7046 | 0.5156 | 0.2068 |
0.1829 | 8.2300 | 7300 | 0.7658 | 0.5190 | 0.2108 |
0.1165 | 8.3427 | 7400 | 0.8318 | 0.5210 | 0.2139 |
0.1255 | 8.4555 | 7500 | 0.7769 | 0.5188 | 0.2085 |
0.1013 | 8.5682 | 7600 | 0.7409 | 0.5153 | 0.2044 |
0.1273 | 8.6809 | 7700 | 0.7661 | 0.5181 | 0.2076 |
0.1178 | 8.7937 | 7800 | 0.8007 | 0.5218 | 0.2113 |
0.1028 | 8.9064 | 7900 | 0.7513 | 0.5137 | 0.2075 |
0.2003 | 9.0192 | 8000 | 0.7449 | 0.5133 | 0.2077 |
0.1495 | 9.1319 | 8100 | 0.8426 | 0.5140 | 0.2105 |
0.1283 | 9.2446 | 8200 | 0.7653 | 0.5112 | 0.2066 |
0.0585 | 9.3574 | 8300 | 0.7894 | 0.5176 | 0.2092 |
0.1543 | 9.4701 | 8400 | 0.7675 | 0.5147 | 0.2064 |
0.144 | 9.5829 | 8500 | 0.7927 | 0.5187 | 0.2096 |
0.1185 | 9.6956 | 8600 | 0.8045 | 0.5201 | 0.2101 |
0.1707 | 9.8083 | 8700 | 0.7941 | 0.5193 | 0.2089 |
0.0927 | 9.9211 | 8800 | 0.8019 | 0.5205 | 0.2091 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1