metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: xls-r-300-cv17-upper-sorbian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: hsb
split: validation
args: hsb
metrics:
- name: Wer
type: wer
value: 0
xls-r-300-cv17-upper-sorbian
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0001
- Wer: 0.0
- Cer: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
4.0153 | 1.4286 | 100 | 4.2633 | 1.0 | 1.0 |
3.2616 | 2.8571 | 200 | 3.2377 | 1.0 | 1.0 |
3.1754 | 4.2857 | 300 | 3.2002 | 0.9892 | 0.9774 |
0.686 | 5.7143 | 400 | 0.5966 | 0.65 | 0.1446 |
0.2345 | 7.1429 | 500 | 0.2319 | 0.2981 | 0.0567 |
0.1576 | 8.5714 | 600 | 0.1181 | 0.1759 | 0.0309 |
0.1403 | 10.0 | 700 | 0.0603 | 0.0956 | 0.0155 |
0.0833 | 11.4286 | 800 | 0.0297 | 0.0475 | 0.0077 |
0.0552 | 12.8571 | 900 | 0.0261 | 0.0405 | 0.0055 |
0.059 | 14.2857 | 1000 | 0.0225 | 0.0335 | 0.0054 |
0.093 | 15.7143 | 1100 | 0.0136 | 0.0203 | 0.0035 |
0.0785 | 17.1429 | 1200 | 0.0153 | 0.0253 | 0.0043 |
0.0551 | 18.5714 | 1300 | 0.0120 | 0.0215 | 0.0030 |
0.0742 | 20.0 | 1400 | 0.0074 | 0.0095 | 0.0013 |
0.0285 | 21.4286 | 1500 | 0.0053 | 0.0095 | 0.0014 |
0.021 | 22.8571 | 1600 | 0.0066 | 0.0108 | 0.0015 |
0.0297 | 24.2857 | 1700 | 0.0038 | 0.0057 | 0.0007 |
0.0451 | 25.7143 | 1800 | 0.0062 | 0.0095 | 0.0014 |
0.0353 | 27.1429 | 1900 | 0.0270 | 0.0222 | 0.0038 |
0.0426 | 28.5714 | 2000 | 0.0066 | 0.0095 | 0.0015 |
0.0296 | 30.0 | 2100 | 0.0042 | 0.0076 | 0.0011 |
0.0348 | 31.4286 | 2200 | 0.0031 | 0.0051 | 0.0008 |
0.0336 | 32.8571 | 2300 | 0.0047 | 0.0070 | 0.0010 |
0.0126 | 34.2857 | 2400 | 0.0021 | 0.0051 | 0.0007 |
0.0287 | 35.7143 | 2500 | 0.0031 | 0.0063 | 0.0008 |
0.0253 | 37.1429 | 2600 | 0.0046 | 0.0070 | 0.0012 |
0.0317 | 38.5714 | 2700 | 0.0038 | 0.0044 | 0.0007 |
0.1223 | 40.0 | 2800 | 0.0035 | 0.0076 | 0.0012 |
0.0337 | 41.4286 | 2900 | 0.0031 | 0.0032 | 0.0005 |
0.0125 | 42.8571 | 3000 | 0.0039 | 0.0076 | 0.0010 |
0.0043 | 44.2857 | 3100 | 0.0026 | 0.0013 | 0.0003 |
0.0261 | 45.7143 | 3200 | 0.0016 | 0.0013 | 0.0002 |
0.0129 | 47.1429 | 3300 | 0.0014 | 0.0038 | 0.0007 |
0.0168 | 48.5714 | 3400 | 0.0031 | 0.0044 | 0.0006 |
0.0274 | 50.0 | 3500 | 0.0005 | 0.0 | 0.0 |
0.0157 | 51.4286 | 3600 | 0.0014 | 0.0025 | 0.0003 |
0.0149 | 52.8571 | 3700 | 0.0010 | 0.0019 | 0.0003 |
0.0095 | 54.2857 | 3800 | 0.0009 | 0.0019 | 0.0003 |
0.0158 | 55.7143 | 3900 | 0.0031 | 0.0044 | 0.0005 |
0.0103 | 57.1429 | 4000 | 0.0015 | 0.0019 | 0.0004 |
0.0262 | 58.5714 | 4100 | 0.0024 | 0.0013 | 0.0001 |
0.0515 | 60.0 | 4200 | 0.0007 | 0.0032 | 0.0003 |
0.0085 | 61.4286 | 4300 | 0.0004 | 0.0 | 0.0 |
0.0169 | 62.8571 | 4400 | 0.0018 | 0.0032 | 0.0005 |
0.0096 | 64.2857 | 4500 | 0.0004 | 0.0 | 0.0 |
0.0052 | 65.7143 | 4600 | 0.0002 | 0.0 | 0.0 |
0.0219 | 67.1429 | 4700 | 0.0003 | 0.0 | 0.0 |
0.0031 | 68.5714 | 4800 | 0.0002 | 0.0 | 0.0 |
0.0033 | 70.0 | 4900 | 0.0003 | 0.0 | 0.0 |
0.0026 | 71.4286 | 5000 | 0.0008 | 0.0006 | 0.0001 |
0.0036 | 72.8571 | 5100 | 0.0005 | 0.0006 | 0.0001 |
0.0045 | 74.2857 | 5200 | 0.0002 | 0.0 | 0.0 |
0.0038 | 75.7143 | 5300 | 0.0025 | 0.0044 | 0.0007 |
0.0101 | 77.1429 | 5400 | 0.0003 | 0.0 | 0.0 |
0.0075 | 78.5714 | 5500 | 0.0002 | 0.0 | 0.0 |
0.0086 | 80.0 | 5600 | 0.0001 | 0.0 | 0.0 |
0.0047 | 81.4286 | 5700 | 0.0001 | 0.0 | 0.0 |
0.0009 | 82.8571 | 5800 | 0.0001 | 0.0 | 0.0 |
0.0056 | 84.2857 | 5900 | 0.0001 | 0.0 | 0.0 |
0.009 | 85.7143 | 6000 | 0.0001 | 0.0 | 0.0 |
0.0003 | 87.1429 | 6100 | 0.0001 | 0.0 | 0.0 |
0.0005 | 88.5714 | 6200 | 0.0001 | 0.0 | 0.0 |
0.0034 | 90.0 | 6300 | 0.0001 | 0.0 | 0.0 |
0.0103 | 91.4286 | 6400 | 0.0001 | 0.0 | 0.0 |
0.0027 | 92.8571 | 6500 | 0.0001 | 0.0 | 0.0 |
0.0029 | 94.2857 | 6600 | 0.0001 | 0.0 | 0.0 |
0.004 | 95.7143 | 6700 | 0.0001 | 0.0 | 0.0 |
0.0011 | 97.1429 | 6800 | 0.0001 | 0.0 | 0.0 |
0.0033 | 98.5714 | 6900 | 0.0001 | 0.0 | 0.0 |
0.0003 | 100.0 | 7000 | 0.0001 | 0.0 | 0.0 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1